

Engineering Innovation; Providing Solutions to Your Challenges.

REPORT OF GEOTECHNICAL EXPLORATION

London Laurel Regional Fairgrounds Development

London, Laurel County, Kentucky

Prepared for: London Tourism

May 31, 2024

TABLE OF CONTENTS

1.0 E	XECUTIVE SUMMARY	2
1.1	SUMMARY OF FINDINGS	2
2.0 P	ROJECT INFORMATION	2
2.1	PURPOSE AND SCOPE OF SERVICES	2
2.2	PROJECT DESCRIPTION	3
2.3	SITE CONDITIONS	4
2.4	STRUCTURAL LOADING INFORMATION	4
2.5	SITE GRADING AND TOPOGRAPHY	4
3.0 SI	UBSURFACE FINDINGS AND ENCOUNTERED CONDITIONS	4
3.1	REVIEW OF PREVIOUS SITE DEVELOPMENT AND HISTORICAL INFORMATION	4
3.2	PUBLISHED GEOLOGIC INFORMATION	7
3.3	SUBSURFACE EXPLORATION PROGRAM	8
3.4	SUBSURFACE CONDITIONS	9
4.0 G	EOTECHNICAL CONCERNS AND CONSTRUCTION CONSIDERATIONS	11
4.1	SURFICIAL MATERIALS	11
4.2	CONSTRUCTION IN CUT/FILL AREAS	11
4.3	CONSTRUCTION DURING WET CONDITIONS	11
4.4	PRELIMINARY LIQUEFACTION POTENTIAL AND SETTLEMENT	12
4.5	SITE AND FOUNDATION DRAINAGE	12
4.6	Underground Utilities	13
4.7	Off Site Borrow Material	13
4.8	SOIL COMPACTION EQUIPMENT	13
4.9	SOIL PLASTICITY	13
4.10	SILTY MATERIAL	13
4.11	CONSTRUCTION IN A DEMOLITION ZONE	14
4.12	Granular Material	14
4.13	SOFT SOILS	14
5.0 C	ONFIRMATION-DEPENDENT RECOMMENDATIONS	15
5.1	EARTHWORK	15
5.1.1	SITE PREPARATION	15

Appei	ndix A BORING LOGS	
APPE	ENDICES	
7.0 AS	SSOCIATED GEOTECHNICAL RISKS	23
6.0 RI	EPORT LIMITATIONS	23
5.7	CONSTRUCTION MONITORING AND OBSERVATIONS	22
5.6	PLAN REVIEW	22
5.5.1 5.5.2 5.5.3	GENERAL FLEXIBLE ASPHALT PAVEMENTS RIGID CONCRETE PAVEMENTS	21
5.5	PAVEMENT RECOMMENDATIONS	
5.4	SEISMIC SITE CLASSIFICATION	19
5.3	SLAB-ON-GRADE	
5.2.1 5.2.2	DISCUSSION	
5.2	FOUNDATIONS	17
5.1.2 5.1.3	STRUCTURAL FILL PLACEMENT	

Appendix B LAB RESULTS

May 31, 2024

Chris Robinson London Tourism londonkytourism@gmail.com 606-330-0501 202 South Broad Street, London, KY 40741

Subject: Report of Geotechnical Exploration

London Laurel Regional Fairgrounds Development

London, Laurel County, Kentucky Solid Ground Project No.: 24-301

Mr. Robinson,

Solid Ground Consulting Engineers (Solid Ground) is pleased to present our Report of Geotechnical Exploration. This report is for the proposed London Laurel Regional Fairgrounds Development to be located in London, Kentucky. The geotechnical exploration was conducted in general accordance with the scope of work agreed upon through email.

This report contains our findings and recommendations for the referenced project detailed above. Once completed, it is recommended that Solid Ground have the opportunity to review plans and specifications. In addition, it is recommended that Solid Ground be retained to perform observations during earthwork, foundations, and slab-on-grade construction. Solid Ground will not be held responsible for interpretations and field observations made by others.

We appreciate the opportunity to provide our consulting services to you. We look forward to working with you on this and future projects.

Sincerely,

SOLID GROUND CONSULTING ENGINEERS

Beck Smith, PE Senior Engineer

Kentucky License Number 37415

Richard Farrell, PE Senior Engineer

1.0 Executive Summary

Solid Ground Consulting Engineers performed a geotechnical exploration in support of the proposed New Laurel County Fairgrounds Development located at 1855 State Hwy 229, London, Laurel County, Kentucky. The approximate coordinates of the site are 37.088324°N, -84.042752°W.

1.1 Summary of Findings

Solid Ground conducted a total of four (4) soil test borings at the site, all being located within the approximate development boundaries.

Soil overburden generally consisted of a layer of topsoil or gravel underlain by natural soils described as Silty Sand (SM), Lean Clay (CL) and Clayey Sand (SC) with varying amounts of gravel to auger refusal depths. The borings encountered auger refusal at depths between 10.5 feet and 12.5 feet.

The finished floor elevation (FFE) is currently unknown at the time of this report. It is anticipated that some site grading will be required to achieve the finished grade.

2.0 Project Information

2.1 Purpose and Scope of Services

The purpose of this subsurface exploration was to prepare recommendations for design and construction of foundations and floor slabs for the proposed development. Our scope of work included the following:

- A discussion of site surface conditions.
- A discussion of subsurface conditions encountered as well as a discussion of the published geologic conditions at the site.
- A summary of field and laboratory testing results including a brief review of test procedures.
- Boring logs and laboratory tests will be summarized in the report and included in the appendices.
- A discussion of specific geotechnical conditions and concerns which may affect the design or construction of the project.
- Recommendations for site preparation and construction of compacted fills.

- Recommended general design and construction criteria for the project foundations.
- Recommended general design and construction criteria for the pavement and concrete pad areas.
- A recommendation for seismic site class according to International Building Code which was adopted by the 2018 International Building Code (IBC).

2.2 Project Description

The project consists of an approximately 30,000 square foot building. The approximate site location is depicted below in Figure 1.

Figure 1: Approximate Site Location

2.3 Site Conditions

Solid Ground personnel visited the site throughout the geotechnical exploration to observe existing conditions, to help interpret the subsurface data, and to detect conditions which could affect recommendations.

The site is located at 1855 State Hwy 229, London, Laurel County, Kentucky. The expansion area is mostly covered with low grass, gravel, and asphalt.

2.4 Structural Loading Information

Anticipated maximum column loading of 50 kips and wall loading of 5 kips per linear foot. If these assumed loads are incorrect, Solid Ground should be immediately contacted to revise our recommendations, if necessary.

2.5 Site Grading and Topography

The finished floor elevation (FFE) is currently unknown at the time of this report. Based on existing topography, site grading is anticipated to be moderate.

3.0 Subsurface Findings and Encountered Conditions

3.1 Review of Previous Site Development and Historical Information

Based on review of historical maps provided by the United States Geological Survey (USGS) (Figures 2 & 3) and historical imagery provided by Google Earth (Figures 4 & 5), it appears there has been some development within proximity of the site associated with development of the fairgrounds.

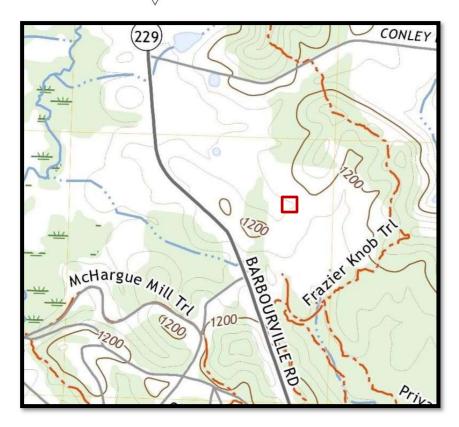


Figure 2: 2022 USGS Topographic Map of the Lily Quadrangle

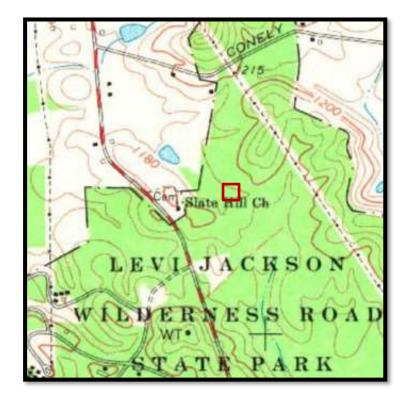


Figure 3: 1970 USGS Topographic Map of the Lily Quadrangle

Figure 4: 2021 Google Earth Imagery

Figure 5: 1997 Google Earth Imagery

3.2 Published Geologic Information

Geologic information was referenced from the Kentucky Geological Survey (KGS), geologic maps of the Lily Quadrangle, Laurel County, Kentucky (Figure 6). The site is underlain by the Pikeville Formation. Locally, the unit is described as containing sandstones, siltstones, shales, and coal, Lower to Middle Pennsylvanian in age.

Figure 6: KGS Geologic Mapping

The KGS mapping (Figure 7) indicates that the underlying rock unit has no karst potential, with zero mapped sinkholes either on the site or within the vicinity of the site. Solid Ground should be contacted if any karst activity is encountered in construction for remediation recommendations.

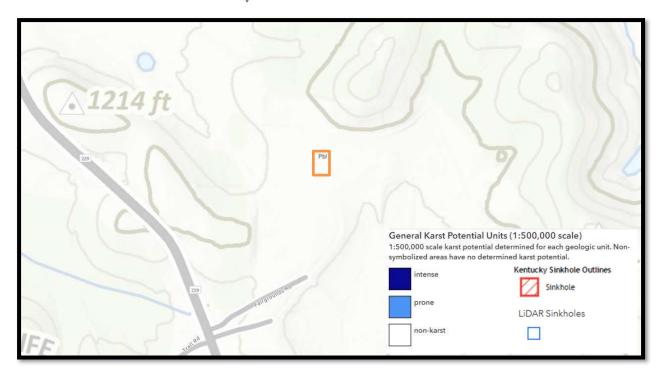


Figure 7: KGS Karst Potential Mapping

3.3 Subsurface Exploration Program

Solid Ground conducted a total of four (4) soil test borings, borings were located within the approximate expansion boundaries. Borings were located as close to the proposed expansion as site conditions allowed.

Boring surface elevations were estimated utilizing ArcGIS and LiDAR data. Therefore, the locations and surface elevations should be considered approximate. It should be noted that the subsurface conditions will vary and the representative profile is based upon the number of borings drilled during the field operations. Boring locations are shown in Figure 8 below.

Figure 8: Approximate Boring Locations

3.4 Subsurface Conditions

The soil samples were classified by Solid Ground personnel according to the Unified Soil Classification System (USCS ASTM D2488; USCS ASTM 2487 for select samples). A description of each soil layer is as follows.

Surficial Materials – Two (2) of the borings (B-1 and B-3) encountered a surficial layer of gravel (6 inches), while B-2 and B-4 encountered a surficial layer of topsoil (6 inches). It should be noted that thicknesses of these materials may vary across the site. The thicknesses presented in this report should be considered approximate.

Natural Soils - The borings encountered fill soils underlying the surficial materials layer described Silty Sand (SM), Lean Clay (CL) and Clayey Sand (SC) with varying amounts of gravel to auger refusal depths. The N-values ranged from 5 to 50+ blows per foot, with a consistency of soft to hard.

Auger Refusal – The borings encountered auger refusal at depths between 10.5 feet and 12.5 feet.

Detailed descriptions and strength characteristics are included on the boring logs in Appendix A.

Groundwater – Groundwater was not encountered within the borings. Free groundwater levels fluctuate with seasonal weather conditions and may vary. Therefore, the borings may not be representative of the actual free water levels. To achieve an accurate measurement of free groundwater levels, water wells or piezometers should be installed.

Solid Ground should be contacted if groundwater is encountered during earthwork operations. Please note, the groundwater table can fluctuate significantly which could have an impact on the subsurface soils. Table 1 summarizes our findings.

Table 1: Boring Summary

Boring Number	Approximate Surface Elevation (ft)	Auger Refusal Depth (ft)	Final Elevation (ft)
B-1	1189.5	10.5	1179.0
B-2	1190.3	11.9	1178.4
B-3	1186.9	12.5	1174.4
B-4	1185.9	12.5	1173.4

May 31, 2023

4.0 Geotechnical Concerns and Construction Considerations

Based on the results of the subsurface exploration and our experience with similar projects, we believe the project site is generally suitable for the proposed development. However, some concerns exist with the subsurface conditions as discussed below.

4.1 Surficial Materials

Based on the information gathered from the borings, the site has a surficial layer of topsoil (6 inches) and gravel (6 inches). These thicknesses are representative of conditions encountered at the boring locations only, thickness and aerial extent of the strata may vary across the site. Construction plans should adequately address stripping and the disposal of these materials prior to earthwork operations. Topsoil should only be used as fill in landscaping areas.

4.2 Construction in Cut/Fill Areas

Cut areas have the potential to be overcut, disturbing the in-situ soils to depths below proposed finished grade. Areas to receive fill are stripped of topsoil and are also sometimes disturbed to depths deeper than intended. Both cut and fill areas should be proof rolled prior to construction taking place. Soft, loose, or wet areas should be identified and remediated in accordance with the recommendations provided in the "5.1 Earthwork" section of this report.

4.3 Construction During Wet Conditions

It is understood that potential development could occur during wet conditions. Based on experience with construction projects during wet conditions, subgrade remediation is often required. In addition, delays of earthwork/foundation operations could occur. Clays swell and silts break down when high moisture conditions are present. To stabilize the subgrade materials, drying and recompacting could be required. During wet conditions, the on-site materials may become saturated and are unable to dry in a timely manner.

Typically, remediation methods consist of undercutting soft and/or saturated soils, moisture conditioning, and recompacting or replacing with a granular stone that is "capped" with dense graded aggregate (DGA). The extent and depth of the undercut is on a case-by-case basis depending on the soil conditions. We recommend contracting Solid Ground to observe earthwork operations and foundation and slab-on-grade construction. In addition, we

recommend that the earthwork contractor and the design team adequately budget for remediation repairs.

4.4 Preliminary Liquefaction Potential and Settlement

Liquefaction is the phenomenon where saturated soils develop high pore-water pressures during seismic shaking and lose their strength characteristics. This phenomenon generally occurs in areas of high seismicity where groundwater is shallow. Liquefaction can produce excessive settlement, ground rupture, lateral spreading, or failure of shallow spread foundations.

Three conditions are generally required for liquefaction to occur:

- 1. The soil must be saturated (relatively shallow groundwater)
- 2. The soil must be loosely packed (low density)
- 3. Ground shaking of sufficient intensity must occur to function as a trigger mechanism.

Based on our recommendations for the foundation the soils should be considered to have low liquefaction potential.

4.5 Site and Foundation Drainage

Experience has shown that the onsite materials are prone to degradation during wet periods of the year and/or under heavy traffic. Surface and ground water should be controlled while the subgrade fill materials are exposed and use only enough compactive effort to achieve stability and job site requirements for compaction. In addition, it is recommended that foundation concrete, or a concrete bearing medium, be placed the same day that foundation excavation is performed.

The final grade should be sloped away from the structure and pavements a minimum of two percent to promote positive drainage. Roof drains and foundation drains should be installed and should discharge surface runoff away from the structure to provide positive site drainage. It should be noted that drainage should be designed and constructed without impacting neighboring properties. Drainage design is beyond our scope of work.

It is imperative that dewatering be maintained during construction and after development. If positive dewatering methods are not continually applied and maintained, the potential of remedial subgrade measures and long-term settlement is greatly increased.

We anticipate that a concern and difficulty during construction will be properly dewatering the site. The contractor should observe the site and understand this report. Drainage design is beyond our scope of services, but Solid Ground can provide drainage design for additional negotiated fees.

4.6 Underground Utilities

Design and Construction plans should adequately address the concern of potential settlement of underground utilities. Please note, all excavations should adhere to applicable codes such as OSHA.

4.7 Off Site Borrow Material

We anticipate fill material may be required to achieve the FFE. Offsite borrow material could be required. Construction plans should include this consideration as well as ensure the offsite borrow material meets the recommendations detailed in this report.

4.8 Soil Compaction Equipment

The soil compaction equipment should be selected by the type of fill anticipated for the site. Smooth drum rollers should be utilized for clean sands and silts, while clays may be compacted utilizing sheepsfoot rollers. We anticipate utilizing both a sheepsfoot roller and a smooth drum roller at this site.

4.9 Soil Plasticity

The subsurface soils were field classified as lean clay. These soils can have high plasticity characteristics and be subject to volume changes with fluctuations in moisture content. The near surface on-site material is not considered highly plastic. Care should still be taken to mitigate subgrade degradation and reduce subgrade remediation. Therefore, we recommend minimal mitigation efforts consisting of the following:

- Improved site drainage to minimize exposure of these soils to moisture fluctuations, especially near building foundations and slab on grade.
- Minimize exposure of these soils to excessive wetting or drying.
- Deepen footings to achieve a more consistent moisture condition.

4.10 Silty Material

The silty material observed on site is prone to breaking down under high moisture and repeated traffic. Care should be taken to not allow water to pond on the site and to reduce

the construction traffic across the building pad and paving areas. Failure to do so will result in delays to both the project budget and schedule.

4.11 Construction in a Demolition Zone

The site is occupied by an existing driveway that will be demolished prior to new construction. Demolition often leaves behind elements of structure foundations, underground utilities, etc. Care should be exercised during site preparation activities to completely remove all such elements and replace any disturbed soils as engineered fill.

4.12 Granular Material

Some of the on-site soils consisted of granular material (sand and gravel). This material often does not allow "neat" excavations for foundations and utilities and will slump from the banks into the excavation. We anticipate that this will require additional backfill material and time to backfill. The contractor should account for this additional material and time during the pre-construction phase.

4.13 Soft Soils

Some soft soils were encountered in borings within the proposed development. These soils may require selective undercutting and replacement as engineered fill per section 5.1.2 of this report or flowable fill.

5.0 Confirmation-Dependent Recommendations

The following recommendations are based on the information gathered and subsurface conditions encountered during this limited exploration. We have developed these recommendations under the assumption that our sampling performed on the site accurately portrays conditions that are not immediately visible due to earth, rock, water, or time. It should be noted that Solid Ground cannot be held liable for fill placed or performance of the subgrade without observations to confirm that conditions in the field are consistent with inferences from the samples we obtained.

Please note, if earthwork construction begins during wet weather conditions there is a likelihood that the schedule will be prolonged and extensive remediation, or a more robust geotechnical recommendation will be required.

5.1 Earthwork

5.1.1 Site Preparation

- Topsoil and other surficial materials should be stripped to prepare the site for construction.
 - o In-place density testing should be performed to check that the previously recommended compaction criteria have been achieved.
 - Fill placement should be monitored on a full-time basis by Solid Ground during site grading.
 - Fill placement should extend to a minimum of 10 feet beyond the building footprint.
- After stripping and cutting operations, the subgrade should be evaluated by Solid Ground. Possible remediation methods may be required if the subgrade and site soils are exposed to wet weather conditions.
- The building pad may require stabilization prior to new fill placement or for slab-on grade-construction. Solid Ground should be consulted to assist in selecting the method most appropriate for site conditions. These methods may consist of any or combination of the following:
 - o Tensar geogrid reinforcement.
 - o "Walking" No. 2 stone into the soft subgrade.
 - Application of compacted DGA.

5.1.2 Structural Fill Placement

The finished floor elevation (FFE) is currently unknown at the time of this report. It is anticipated that some site grading will be required to achieve the finished grade. Backfill materials for structural fill placement may consist of soil or durable crushed stone. The following steps are recommended for fill placement within the building pad. The onsite soils are expected to meet the requirements for structural fill material. Off-site borrow material is anticipated and cannot be ruled out without a review of the site grading plan.

Structural fill material, if required, is defined as the following:

- Inorganic natural soil with maximum particle sizes of 3 inches.
- Plasticity Index of no greater than 30 percent and liquid limit less than 50.
- Solid Ground should observe the material to confirm the soils meet applicable standards for structural fill.
- A Other sources of structural fill should be verified by Solid Ground.
 - o If other sources of structural fill are anticipating, Solid Ground should collect a bulk sample for standard Proctor testing.

The following are recommendations for placement of soil structural fill:

- Structural fill should be placed in 6-inch to no greater than 8-inch-thick layers.
- Structural fill should be compacted to at least 98 percent of the soil's maximum dry density as determined by the standard Proctor compaction test (ASTM D698).
- The moisture content of the fill material should be maintained at about 2 percent (above or below) of its standard Proctor optimum moisture content.
- ▲ In-place density testing should be performed to determine if the previously recommended compaction criteria have been achieved.
- Fill placement should be monitored on a full-time basis by Solid Ground during site grading.
- Fill placement should extend to a minimum of 10 feet beyond the building footprint.

Solid Ground should be contacted if any unexpected subsurface conditions are encountered during earthwork construction. It is important that Solid Ground observe earthwork construction.

5.1.3 Protection of Earthwork

Common earthwork construction practices can leave soils exposed for long periods of time while work is performed in other areas of a site. Care should be taken during the earthwork phase to protect soils from degradation caused by sunlight, wind, precipitation, and other factors. Solid Ground recommends that any exposed soil be protected by straw, seeding, rock, or other methods if the area the soil is in will be left unattended for more than three days. Any soil left unattended or unprotected for more than three days should be reevaluated prior to continuation of work.

5.2 Foundations

5.2.1 Discussion

Based on the subsurface conditions encountered, information gathered during this exploration, and past knowledge of the site's development, we recommend that foundations be designed as shallow spread footings bearing on stiff/dense or better in-situ material.

We recommend the use of a maximum net allowable bearing pressure of 2,000 PSF (pounds per square foot) for foundations bearing on these materials. It should be noted that there is a potential for selective undercut in the foundations due to the soft soils encountered along the surface. The undercut can be replaced with suitable structural fill as recommended in this report or replaced with flowable fill with soil like properties.

A detailed settlement analysis was beyond the scope of this report. Based on the assumed structural loads, the available site grading information, the recommended bearing pressure, knowledge of the site's development and empirical correlation for the subsurface conditions encountered beneath the proposed structure, we estimate the total settlement of the foundation to be about 1 inch or less and differential settlement of the foundation to be about ½ inch or less.

Once the design is finalized, we recommend allowing Solid Ground the opportunity to review the plans and specifications.

5.2.2 Construction Considerations

The following typical construction considerations are recommended:

- ♠ Column footings and strip footings should be at least 24 inches wide and 12 inches thick.
- All exterior footing bottoms should be at least 24 inches below the lowest adjacent exterior grade for protection against frost penetration.
- Clean the foundation bearing area so it is nearly level and is free of ponded water and loose material.
- ♠ Dewatering methods may be necessary if the foundation excavation takes place during wet weather.
- Solid Ground should be on site while the foundation construction is performed.
- ▶ Dynamic Cone Penetrometer (DCP) testing should be performed on each spread footing and every 20 feet within each strip footing as a check on the soil bearing capacity.
- ◆ Once fill operations are completed and foundation excavations begin, it is important that the foundation excavations be protected from wet weather conditions by placement of concrete or bearing medium immediately after. Please note, providing positive site drainage is critical to the performance of the foundations.
- There is a possibility that during foundation excavations that perched water may be encountered. If perched water is encountered, it is recommended to dewater the site. This may be achieved by constructing "bleeders" or trenches from the site to an area with lower elevation and allow water to be gravity directed away from site.

5.3 Slab-on-Grade

We assume that the slab-on-grade will be utilized for moderate loads of up to 250 pounds per square foot maximum. If this assumption is incorrect, Solid Ground should be contacted to modify recommendations.

- ▲ It should be noted that if the site soils are exposed to wet weather conditions or continuous construction traffic, the soils have potential to degrade and will lose their strength. This could require a more robust subgrade improvement design.
- ▲ It is imperative that dewatering be continuous and construction traffic be controlled away from the building pad.

▲ It should be noted that the means and methods of construction that will be performed by others will heavily dictate the suitability and sustainability of the site conditions and building service life during and after construction.

The following recommendations should be followed:

- Solid Ground should observe the finished subgrade once grading is completed. If excessive pumping and/or rutting is observed remediation may be required. Typical remediation methods consist of undercutting the unsuitable soil and placing recompacted soil or granular material.
- ▲ If construction is to take place during wet periods of the year, there is a potential that remediation methods will be required to stabilize the soil subgrade. Solid Ground should be consulted to assist in selecting the method most appropriate for site conditions. These methods may consist of any or combination of the following:
 - o Tensar geogrid reinforcement.
 - o "Walking" No. 2 stone into the soft subgrade.
 - o Application of consolidated No. 57 stone.
- It is imperative that quality control be performed specifically for the slab-on-grade to ensure that moisture contents, as well as compaction efforts, are within optimum.
- ▲ It is recommended that the floor slab be constructed with an open graded stone base of a minimum of **8 inches** in thickness. The floor slab should be constructed with a minimum of **6 inches** of reinforced concrete.
- A subgrade modulus, *k*, of 80 pounds per cubic inch (PCI) for design of the floor slab supported by granular material.
- Control joints should be placed per the most recent ACI standards and guidance.
- The floor slab should be fully ground-supported. This will reduce the possibility of cracking and displacement of the floor slab due to differential settlement.

It is recommended to perform proof rolling prior to placing stone to serve as the slab working base, and again immediately prior to constructing the slab.

5.4 Seismic Site Classification

The Seismic Site Classification assumes that shallow spread and strip footings will be utilized. This classification is based on the seismic standards and design values from the 2009 NEHRP Recommended Seismic Provisions and the 2010 ASCE-7 Standard. Based on the results of our exploration and the geology of the area, we assign a site seismic classification of "C".

5.5 Pavement Recommendations

5.5.1 General

Based on our experience with similar traffic loading (assumed) and subsurface conditions, the subgrade soils are assumed to have a CBR of 3.0 for the pavement analysis based on SPT correlation. American Association of State Highway and Transportation Officials (AASHTO) Guide for Design of Pavement Structures (1993) was used for the analysis. The assumptions are listed below for the pavement analysis.

If the following assumptions are incorrect, Solid Ground should be contacted to provide additional recommendations.

- Initial Serviceability of 4.2
- Resilient Modulus of 4,500
- Terminal Serviceability of 2.0
- Reliability of 80%
- Life of 15 years
- ▲ Maximum Estimated Equivalent Single Axe Load (ESAL's) of 30,000 for Light Duty with following assumptions:
 - o 10 Package Delivery Vehicles per day
 - o 700 Passenger Cars per day
- Maximum Estimated Equivalent Single Axe Load (ESAL's) of 100,000 for Heavy Duty, with following assumptions:
 - o 3 Garbage trucks per week
 - o 10 Buses per week
 - o 10 Tractor Trailers per week
 - o 10 Package Delivery Vehicles per day
 - o 700 Passenger Cars per day

5.5.2 Flexible Asphalt Pavements

Based on the design assumptions detailed above, we recommend the following asphalt pavement sections in Tables 2 and 3:

Table 2: Light Duty Asphalt Pavement Section

Material	Light Duty Thickness (Inches)
Asphalt Surface Course	1.5
Asphalt Base Course	2.0
Compacted Crushed Stone Base	8.0

Table 3: Heavy Duty Asphalt Pavement Section

Material	Heavy Duty Thickness (Inches)		
Asphalt Surface Course	2.0		
Asphalt Base Course	2.0		
Compacted Crushed Stone Base	9.0		
*1 Layer of Tensar TX5 and Geogrid Filter Fabric			
*Walk #2 into subgrade and observe proof roll to identify unsuitable areas			

^{*}Indicates typical remediation methods for soft soils identified during proof rolling. Not required if proof rolls indicate stable subgrade conditions.

5.5.3 Rigid Concrete Pavements

Based on the assumptions given in Section 5.5.1, the following concrete pavement sections are recommended in Table 4:

Table 4: Heavy Duty Rigid Concrete Pavement

Material	Heavy Duty Thickness	Designed Compressive		
Material	(Inches)	Strength (psi)		
Concrete	7.0	4,000		
Compacted Crushed Stone	7.0			
Base	7.0			
*1 Layer of Tensar TX5 and Geogrid Filter Fabric				
*Walk #2 into subgrade and observe proof roll to identify unsuitable areas				

^{*}Indicates typical remediation methods for soft soils identified during proof rolling. Not required if proof rolls indicate stable subgrade conditions.

We recommend the dumpster pad be constructed of concrete:

The dumpster pad apron should extend the entire length of the garbage truck beyond the face of the dumpster.

5.6 Plan Review

To better assure conformance of the final design documents with the recommendations contained in this report, and to better comply with the building department's requirements, Solid Ground should review the completed project plans prior to construction. The plans should be made available for our review as soon as possible after completion so that we can better assist in keeping your project schedule on track.

We recommend that the following project-specific note be added to the architectural, structural, and civil plans: "The geotechnical aspects of the project, including site grading, utility and foundation excavations, slab on grade construction, placement and compaction of engineered fill, installation of site drainage should be performed in accordance with the recommendations of the "Geotechnical Report prepared by Solid Ground Consulting Engineers, dated May 31, 2024."

5.7 Construction Monitoring and Observations

Based on past experience, in order to obtain the Certificate of Occupancy for this development, you will be required to directly contract a qualified and certified inspection firm to provide special inspection items consisting of observing the following:

- Soil Construction
- Foundation Construction
- Concrete Placement
- Reinforcement Placement
- Steel Construction

It is advantageous to the owner to contract with Solid Ground to provide construction monitoring and observations for this project. Some of those benefits are as follows:

As the Geotechnical Engineer of Record (GER) for this project, we will provide confirmation that subsurface conditions exposed during construction are

May 31, 2023

substantially the same as those interpolated from our limited subsurface exploration, on which the analysis and design were based.

The recommendations in this report are based on limited subsurface information. The nature and extent of variation across the site may not become evident until construction. If variations are then exposed, it will be necessary to re-evaluate our recommendations. In the event that subsurface conditions differ from those anticipated, we as the GER will provide recommendations if deemed necessary.

6.0 Report Limitations

This report has been prepared for the exclusive use of *London Tourism and Mr. Chris Robinson* for specific application to the project site. Our recommendations have been prepared using generally accepted standards of geotechnical engineering practice in the Commonwealth of Kentucky. No other warranty is expressed or implied.

The recommendations provided are based on the subsurface information and other findings obtained by Solid Ground as well as information provided by you. If there are revisions to the plans for this project or if subsurface conditions detailed in this report are encountered during construction that are different than our exploration, we should be notified immediately to modify the foundation recommendations if deemed necessary. We cannot be held responsible for the impact of those conditions on the project if those impacts are not made known to us.

The scope of services did not include an environmental assessment for determining the presence or absence of wetlands or hazardous or toxic materials. Any statements in this report or on the boring logs regarding odors, colors, and unusual or suspicious items or conditions are strictly for informational purposes.

7.0 Associated Geotechnical Risks

The analytical tools which are used by the geotechnical engineer in this area are generally empirical and must be used in conjunction with professional engineering judgment and experience. Therefore, the recommendations presented in this geotechnical exploration should not be considered risk-free and are not a guarantee that the proposed structure will perform as planned. The engineering recommendations presented in this are based on the information gathered during the subsurface exploration, information provided by you and past experience with similar projects.

<u>APPENDICES</u>

APPENDIX A – BORING LOGS

APPENDIX B – LAB RESULTS

Project: Laurel County Fairgrounds
Location: 3XQ4+8W London, KY, USA37.08833, -84.04268
Project Number: 24-301

	·	
	•	Lat/Long: 37.088728, -84.042535
Location Accuracy: Estimated from Google Maps	Client Name: London Tourism	Hammer Type: Auto
Method: Auger		

	ou. At	190.						
			Die Tura		Sam	ples		Lab
Depth (Ft)	Elevation (Ft)	Graphic Log	Rig Type Lonestar LST1G+HDA Tooling 2-3/4" Hollow Stem Auger Surface Elevation 1189.5'	Depth of Sample	Sample Graphic	Blow Counts	Uncorrected N-Value	Moisture Content (%)
			Visual Classification and Remarks	Del	Sa	ш	ر (Moist
			Gravel 0.5					
-	_		Silty Sand with Gravel , hard, dry to moist, orangish brown (SM)	2.5 ft				
_	_					19-50/0.4'	50	13.8
5-	1185		5': gray, shaly, no gravel	5 ft				
_	_		3 . gray, shary, no graver			50/0.5'	50	
_	_		7.5': dark gray	7.5 ft		16-50/0.4'	50	13.6
_	1180			10.5				
10 —			10.5	10 ft		50/0.5'	50	
		CERTERIAL SE	Auger refusal at 10.5'			J		

Graphics Legend

SS - Small Split Spoon

SS - Small Split Spoon

SM

Water Levels

ST
SM
SM
Water Levels

Project: Laurel County Fairgrounds Location: 3XQ4+8W London, KY, USA37.08833, -84.04268 Project Number: 24-301

• •		Lat/Long: 37.088725, -84.042822
Location Accuracy: Estimated from Google Maps	Client Name: London Tourism	Hammer Type: Auto
Method: Auger		

Rig Type Lonestar LST1G+HDA Tooling 2-3/4" Hollow Stem Auger Surface Elevation 1190.3' Visual Classification and Remarks Topsoil Lean Clay, stiff, moist, light brown,	Moisture Content (%)
Topsoil 0.5 Lean Clay, stiff, moist, light brown,	Moist
Lean Clay, stiff, moist, light brown,	
trace organics (CL)	
2.5 ft	
4-5-6 11	23.9
5 ft	
5- 1185 5': very stiff, trace sand 6-8-11 19	20.7
7.5 7.5 ft	
Clayey Sand, hard, moist, black, trace organics, shaly (SC)	
10 1180 10.0 10 ft 50/0.4' 50	
Silty Sand, hard, moist, light brown, no organics (SM)	
11.9	

Auger relusar at 11.9

Graphics Legend		Water Levels			
Topsoil	SM	⊻			
CL	SS - Small Split Spoon	y -			
/////// sc	-				
Solid Ground Consulting Engineers, PLLC					

Project: Laurel County Fairgrounds Location: 3XQ4+8W London, KY, USA37.08833, -84.04268 Project Number: 24-301

, ,	•	Lat/Long: 37.087963, -84.042562
Location Accuracy: Estimated from Google Maps	Client Name: London Tourism	Hammer Type: Auto
Method: Auger		

			Rig Type	Lonestar		Sam	ples			Lab	
Depth (Ft)	Elevation (Ft)	Graphic Log	Tooling Surface Elevation	LST1G+HDA 2-3/4" Hollow Stem Auger 1186.9'	Depth of Sample	Sample Graphic	Blow Counts	Uncorrected N-Value	% Fines	Atterberg Limits (LL-PL-PI)	Moisture Content (%)
		0000	Gravel	0.5							Σ
-	1185		Lean Clay, firm to sti brown, trace organic	ff, moist, orangish	2.5 ft						
-					2.010	X	3-2-3	5	87.11	35-17-18	20.4
5-			5': very stiff		5 ft	X	2-6-11	17			
-	-		7.5': with sand, no or	ganics	7.5 ft		13-12-16	28			23.1
10 -	- - 1175		Clayey Sand, hard, n (SC)	10.0 noist, light brown	10 ft		13-50/0.3'	50			
-	-		Auger refusal at 12.5'	12.5							

Graphics Legend Water Levels

Soil Boring: B-4

Project: Laurel County Fairgrounds Location: 3XQ4+8W London, KY, USA37.08833, -84.04268 Project Number: 24-301

• •	•	Lat/Long: 37.087966, -84.042832
Location Accuracy: Estimated from Google Maps	Client Name: London Tourism	Hammer Type: Auto
Mothod: Augor		

Meth	ou: At	iger						
			Dia Tuna		Sam	ples		Lab
Depth (Ft)	Elevation (Ft)	Graphic Log	Rig Type Lonestar LST1G+HDA Tooling 2-3/4" Hollow Stem Auger Surface Elevation 1185.9'	Depth of Sample	Sample Graphic	Blow Counts	Uncorrected N-Value	Moisture Content (%)
			Visual Classification and Remarks	De	Sa	Ш	٦	Moist
			Topsoil 0.5					
-	1185		Lean Clay , hard, dry to moist, light brown (CL)	2.5 ft				
-	- - -				X	7-13- 50/0.5'	50	17.4
	-		5.0	5 ft				
5-	1180		Clayey Sand, hard, dry to moist, tan (SC)			16-50/0.5'	50	11.7
-	- - - -		7.5': orangish light gray, very stiff, dry to moist	7.5 ft		7-12-19	31	
10 —	1175		Silty Sand, hard, dry to moist, dark gray, shaley (SM)	-				
			Auger refusal at 12.5'					
1								

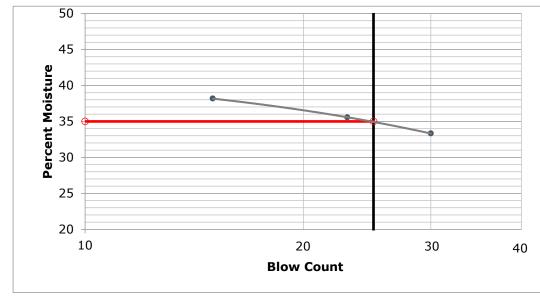
Distribution:

Report:

REPORT OF ATTERBERG LIMIT TESTING - ASTM D4318

 Project Name
 Laurel FG
 Project #
 24-301

 Sample #
 B3
 Depth
 2.5'-4.0'


 Soil Description
 Brown LEAN CLAY
 Prep. Method
 DRY

 Date Sample Received
 5/24/2024
 Date Tested
 5/28/2024

LIQUID LIMIT

Run Number	1	2	3	4	5	6
Tare Number	13	30	34			
Tare + Wet Soil	21.4	19.6	21.0			
Tare + Dry Soil	19.5	18.0	18.9			
Weight of Water	1.9	1.6	2.1			
Weight of Tare	13.8	13.5	13.4			
Weight of Dry Soil	5.7	4.5	5.5			
Water Content	33.3	35.6	38.2			
Number of Blows	30	23	15			

Liquid limit test was performed using manual device and metal grooving tool

LL 35
PL 17
PI 18

SYMBOL FROM PLASTICITY

> CHART CL

Minus #200

87.11

USCS

LEAN CLAY

PLASTIC LIMIT

Run Number	1	2	3	4	5	Natural Moisture
Tare Number	55	114				
Tare + Wet Soil	21.2	20.0				
Tare + Dry Soil	20.1	19.1				
Weight of Water	1.1	0.9				
Weight of Tare	13.8	13.8				
Weight of Dry Soil	6.3	5.3				
Water Content	17.5	17.0				
Plastic Limit	17	⁷ .2				

Plastic limt test specimens were hand rolled

Distribution:

Report of Percent Passing No. 200 Sieve ASTM D1140

•		ASTM	D1140)		
Project Name		Laurel FG		Project #	24-3	301
Sample #		В3		Depth	2.5'-4.0'	
Sample #				Бериі	2.5	4.0
Soil Description	Bro	own LEAN CL	AY		Method A or B	В
Date Sample Received		5/24/2024		Date Tested	5/28/	2024
Boring/Sample No.	В3					
Depth (From-To)	2.5'-5.0'					
#200 DATA						
Tare Number	LRP					
Wet Soil + Tare, g	836.3					
Dry Soil + Tare, g	478.5					
Wt. of Tare	435.6					
Wt. of Dry Soil, g	42.9					
Soak Time, hours	24					
% MOISTURE DATA						
Tare Number	8	188				
Wet Soil + Tare, g	74.1	72.5				
Dry Soil + Tare, g	64.0	62.4				
Wt of Water	10.1	10.1				
Wt of Tare	13.6	13.6				
Wt. of Dry Soil, g	50.4	48.8				
% Moisture	20.0	20.7				
CALCULATIONS						
Dry Wt. Before, g	332.90					
Dry Wt. After, g	42.90					
% Retained	12.9					
% Passing	87.1					

Natural Moisture Content Determination (ASTM D2216)

Project Name:	t Name: Laurel FG		5/28	3/2024	
Project Number:	24-301	Page:	1	of	1

Boring Number	Sample Depth	Can ID Number	Can Weight	Wet Weight + Can	Dry Weight + Can	Moisture %
B1	2.5-3.4	4	13.9	74.1	67.6	12.1
		27	13.8	65.5	58.6	15.4
B1	7.5-8.4	38	13.7	73.5	66.2	13.9
		108	13.5	66.1	59.9	13.4
B2	2.5-4.0	40	13.9	77.2	65.0	23.9
		42	13.8	77.7	65.4	23.8
B2	5.0-6.5	25	13.5	68.4	59.0	20.7
		100	13.9	69.7	60.1	20.8
B3	2.5-4.0	8	13.6	74.1	64.0	20.0
		188	13.6	72.5	62.4	20.7
B3	7.5-9.0	17	13.6	74.4	63.8	21.1
		33	13.4	68.9	57.8	25.0
B4	2.5-4.0	46	13.5	70.0	62.6	15.1
		47	13.8	77.6	67.1	19.7
B4	5.0-6.0	3	13.4	77.1	70.4	11.8
		48	13.4	72.1	66.0	11.6
	·					

<u>BUILI</u>	DING LOADS	/ DESCRIPTION:		
WIDTH		LENGTH: 300.67		SITE ADDRESS: 37°05'18.9"N 84°02'35.3"W LONDON, KY 40744
(BUILD	ING DIMENSIONS	ARE NOMINAL. REFE	R TO PLANS).	
	TRUCTURE IS DE ED AS REQUIRED		E LOADS INDICATED AND 18	RISK CATEGORY: III- High CONSTRUCTION TYPE: IIB
THE CO	ONTRACTOR IS TO	O CONFIRM THAT THE	ESE LOADS COMPLY WITH	
THE RE	EQUIREMENTS OF	F THE LOCAL BUILDIN	G DEPARTMENT.	
ROOF	DEAD LOAD:	2.0 PSF (ROC	OF PANELS & PURLINS)	
COLLA	TERAL LOAD:	4.0 PSF 1	BASIC WIND SPEED: 120 M	MPH .
ROOF	LIVE LOAD:	20.00 PSF	WIND EXPOSURE: C	
GROU	ND SNOW LOAD:	_15 PSF	INTERNAL PRESSURE COEFF.:	
SNOW	EXPOSURE:	1.0	0.18 / -0.18	
THERM	MAL FACTOR:	1.20	WIND IMP. FACTOR 1.00	
SNOW	IMP. FACTOR:	1.10	MAPPED SPECTRAL RESPONSE ACC	SPECTRAL RESPONSE COEFF.
ROOF	SNOW LOAD:	12.99 PSF	Ss <u>0.24</u>	Sds <u>0.25</u>
SITE C	LASS:	D - default	S1 <u>0.10</u>	Sd1 <u>0.16</u>
SEISM	IC DESIGN CAT.:	<u>C</u>		DESIGN BASE SHEAR, V:
SEISM	IC IMP. FACTOR	1.25		EXPANDED FORMULA 0.667*le*Sms*W/R
Cs (LO	NGITUDINAL)	0.106		LONGITUDINAL 45.05
Cs (TR	ANSVERSE)	0.106	SEISMIC FORCE RESISTING SYSTEM	TRANSVERSE 45.16
R (LON	<u>IGITUDINAL)</u>	3	STEEL SYSTEMS NOT SPECIFICALLY	DETAILED FOR SEISMIC RESISTANCE
R (TRA	NSVERSE)	3	STEEL SYSTEMS NOT SPECIFICALLY	DETAILED FOR SEISMIC RESISTANCE
GENEF	RAL NOTES:			
1)	ALL STRUCTURAL		WELDED PLATE MEMBERS ARE DESIGNED IN A REQUIRED BY THE SPECIFIED BUILDING CODE.	CCORDANCE WITH THE AISC "SPECIFICATIONS
2)	ALL WELDING OF S	STRUCTURAL STEEL IS E	ASED ON AWS D1.1 "STRUCTURAL WELDING C	ODE", LATEST EDITION.
3)	MATERIALS:			
		GE, AND WEB MATERIAL . TUBE		E 50
	HOT-ROLLED	STRUCTURAL	A992 OR A572 GRADE 50	
		3 GTH BOLTS	F1554 GRADE 55 A325	
	BLIND BOLTS.		"HOLLO-BOLT" OR "BOXBOLT" B	
4)	FABRICBOLT TIGHTENING		DAF 29CPPVDF##G75 (FIRE-RAT	ED PER NFPA 701)
4)			5 UNLESS NOTED OTHERWISE.	
		CONNECTIONS SHALL BI E NOT REQUIRED UNLE		
	WASHERS AR	E NOT REQUIRED UNLE	55 NOTED OTHERWISE.	
- /			RIMER. THIS PAINT IS NOT INTENDED FOR LONG	
6)			ED BY OTHERS ARE ASSUMED TO MEET WIND I BY AN IMPACT-PROTECTIVE SYSTEM OR HAVI	
	BY THE BUILDING			
7)		OS, UNLESS NOTED OTH THE METAL BUILDING S	ERWISE, SHALL BE UNIFORMLY DISTRIBUTED. SUPPLIER.	IF CONCENTRATED LOADS ARE TO EXCEED
8)			ENDED TO HOLD SNOW AND/OR ICE ON THE R IIDANCE OF THE ENGINEER OF RECORD TO NO	OOF SYSTEM ARE TO BE USED ON THIS BUILDING, OT EXCEED THE DESIGN ROOF SNOW LOAD.
9)	ADDITIONAL COLLA	ATERAL LOADING HAS B	EEN CONSIDERED. PLEASE REFER TO SHEET (C2 FOR FURTHER DETAILS.
FOU	NDATION AND ANCH	HOR BOLTS:		

1) FOUNDATION AND ANCHOR DESIGN IS NOT BY CLEARSPAN. THE FOUNDATION AND ANCHOR DESIGN IS BY

OTHERS. REFER TO ANCHOR BOLT PLAN GENERAL NOTES - NOTE 2 ON SHEET B2 FOR FURTHER INFORMATION.

BUILDER / CONTRACTOR RESPONSIBILITIES

IT IS THE RESPONSIBILITY OF THE BUILDER/CONTRACTOR TO ENSURE THAT ALL PROJECT PLANS AND SPECIFICATIONS COMPLY WITH THE APPLICABLE REQUIREMENTS OF ANY GOVERNING BUILDING AUTHORITIES. THE SUPPLYING OF SEALED ENGINEERING DATA AND DRAWINGS FOR THE METAL BUILDING SYSTEM DOES NOT IMPLY OR CONSTITUTE AN AGREEMENT THAT THE METAL BUILDING SYSTEM MANUFACTURER OR ITS DESIGN ENGINEER IS ACTING AS THE ENGINEER OF RECORD OR DESIGN PROFESSIONAL FOR A CONSTRUCTION PROJECT.

APPROVAL OF THE METAL BUILDING SYSTEM MANUFACTURER'S DRAWINGS AND CALCULATIONS INDICATE THAT THE METAL BUILDING SYSTEM MANUFACTURER CORRECTLY INTERPRETED AND APPLIED THE REQUIREMENTS OF THE CONTRACT DRAWINGS AND SPECIFICATIONS. (SECT. 4.4.1 AISC CODE OF STANDARD PRACTICE, 2016 ED.) WHERE DISCREPANCIES EXIST BETWEEN THE METAL BUILDING SYSTEM MANUFACTURER'S STRUCTURAL STEEL PLANS AND THE PLANS FOR OTHER TRADES, THE STRUCTURAL STEEL PLANS SHALL GOVERN. (SECT. 3.3 AISC CODE OF STANDARD PRACTICE, 2016 ED.) DESIGN CONSIDERATIONS OF ANY MATERIALS IN THE STRUCTURE WHICH ARE NOT FURNISHED BY THE METAL BUILDING SYSTEM MANUFACTURER ARE THE RESPONSIBILITY OF THE CONTRACTORS AND ENGINEERS OTHER THAN THE METAL BUILDING SYSTEM MANUFACTURER'S ENGINEER UNI ESS SPECIFICALLY INDICATED.

THE CONTRACTOR IS RESPONSIBLE FOR ALL ERECTION OF STEEL AND ASSOCIATED WORK IN COMPLIANCE WITH THE METAL BUILDING SYSTEM MANUFACTURER "FOR CONSTRUCTION" DRAWINGS.

ALL BRACING AS SHOWN AND PROVIDED BY THE METAL BUILDING SYSTEM MANUFACTURER FOR THIS BUILDING IS REQUIRED AND SHALL BE INSTALLED BY THE ERECTOR AS A PERMANENT PART OF THE STRUCTURE.

TEMPORARY SUPPORTS, SUCH AS TEMPORARY GUYS, BRACES, FALSE WORK, CRIBBING OR OTHER ELEMENTS REQUIRED FOR THE ERECTION OPERATION WILL BE DETERMINED AND FURNISHED AND INSTALLED BY THE ERECTOR. THESE TEMPORARY SUPPORTS WILL SECURE THE STEEL FRAMING, OR ANY PARTLY ASSEMBLED STEEL FRAMING, AGAINST LOADS COMPARABLE IN INTENSITY TO THOSE FOR WHICH THE STRUCTURE WAS DESIGNED, INCLUDING THOSE RESULTING FROM WIND AND ERECTION OPERATIONS, BUT NOT THE LOADS RESULTING FROM THE PERFORMANCE OF WORK BY OR THE ACTS OF OTHERS, NOR SUCH UNPREDICTABLE LOADS AS THOSE DUE TO HURRICANE, TORNADO, EARTHQUAKE, EXPLOSION, OR COLLISION. (SECT. 7.10.3 AISC CODE OF STANDARD PRACTICE, 2016 ED.)

ONCE OWNER HAS SIGNED THE APPROVAL PACKAGE AND THE PROJECT IS RELEASED FOR FABRICATION, CHANGES AFTER APPROVAL SHALL BE BILLED TO THE OWNER. CHARGES CAN INCLUDE MATERIAL, ENGINEERING, OR OTHER COSTS. AN ADDITIONAL FEE MAY BE CHARGED IF THE PROJECT MUST BE MOVED FROM FABRICATION AND SHIPPING SCHEDULE.

<u>WARNING</u>: IN NO CASE SHOULD GALVALUME STEEL PANELS BE USED IN CONJUNCTION WITH LEAD OR COPPER. BOTH WARNING: LEAD AND COPPER HAVE HARMFUL CORROSION EFFECTS ON THE ALUMINUM ZINC ALLOY COATING WHEN THEY ARE USED IN CONTACT WITH GALVALUME STEEL PANELS. EVEN RUN-OFF FROM COPPER FLASHING, WIRING, OR TUBING ONTO GALVALUME SHOULD BE AVOIDED.

APPROVAL NOTES

THE FOLLOWING CONDITIONS APPLY IN THE EVENT THAT THESE DRAWINGS ARE USED AS APPROVAL DRAWINGS: IT IS IMPERATIVE THAT ANY CHANGES TO THESE DRAWINGS BE MADE IN CONTRASTING INK (PREFERABLY RED INK), HAVE ALL INSTANCES OF CHANGE CLEARLY INDICATED, AND BE LEGIBLE AND UNAMBIGUOUS. A SIGNATURE AND DATE IS REQUIRED ON ALL PAGES. MANUFACTURER RESERVES THE RIGHT TO RE-SUBMIT DRAWINGS WITH EXTENSIVE OR COMPLEX CHANGES REQUIRED TO AVOID MIS-FABRICATION. THIS MAY IMPACT THE DELIVERY SCHEDULE. APPROVAL OF THESE DRAWINGS INDICATES CONCLUSIVELY THAT THE METAL BUILDING SYSTEM MANUFACTURER HAS CORRECTLY INTERPRETED THE CONTRACT REQUIREMENTS, AND FURTHER CONSTITUTES AGREEMENT THAT THE BUILDING AS DRAWN WITH INDICATED CHANGES REPRESENTS THE TOTAL OF THE MATERIALS TO BE SUPPLIED BY MANUFACTURER. ANY CHANGES NOTED ON THE DRAWINGS NOT IN CONFORMANCE WITH THE TERMS AND REQUIREMENTS OF THE CONTRACT BETWEEN MANUFACTURER AND ITS CUSTOMER ARE NOT BINDING ON MANUFACTURER UNLESS SUBSEQUENTLY SPECIFICALLY ACKNOWLEDGED AND AGREED TO IN WRITING BY CHANGE ORDER OR SEPARATE DOCUMENTATION. MANUFACTURER RECOGNIZES THAT RUBBER STAMPS ARE ROUTINELY USED FOR INDICATING APPROVAL, DISAPPROVAL, REJECTION, OR MERE REVIEW OF THE DRAWINGS SUBMITTED. HOWEVER, MANUFACTURER DOES NOT ACCEPT CHANGES OR ADDITIONS TO CONTRACTUAL TERMS AND CONDITIONS THAT MAY APPEAR WITH USE OF A STAMP OR SIMILAR INDICATION OF APPROVAL, DISAPPROVAL, ETC. SUCH LANGUAGE APPLIED TO MANUFACTURER'S DRAWINGS BY THE CUSTOMER, ARCHITECT, ENGINEER, OR ANY OTHER PARTY WILL BE CONSIDERED AS UNACCEPTABLE ALTERNATIONS TO THESE DRAWINGS NOTES, AND WILL NOT ALTER THE CONTRACTUAL RIGHTS AND OBLIGATIONS EXISTING BETWEEN MANUFACTURER AND ITS CUSTOMER.

THE OWNER MUST SECURE ALL REQUIRED APPROVALS AND PERMITS FROM THE APPROPRIATE AGENCY AS REQUIRED.

CUSTOMER DESIGN APPROVAL

PLEASE SIGN AND CHECK THE APPROPRIATE BOX BELOW THE SIGNATURE AFTER REVIEWING THE DOCUMENTS.

MY SIGNATURE BELOW ACKNOWLEDGES THAT I HAVE READ AND REVIEWED ALL THE SHEETS LISTED IN THE CONTENT GUIDE AND AGREE TO THE SPECIFICATIONS SHOWN UNLESS OTHERWISE NOTED.

UPON ACCEPTANCE OF THE DRAWINGS, ANY DEVIATIONS FROM THE SIGNED DRAWINGS AND SPECIFICATIONS OUTLINED IN THE EXECUTED DRAWINGS ARE SUBJECT TO ADDITIONAL CHARGES AND MAY RESULT IN DELAY OF INSTALLATION OR DELIVERY OF YOUR STRUCTURE. A CHANGE ORDER WILL BE ISSUED TO YOU WITH THE OUTLINED ADDITIONAL COST ASSOCIATED WITH THESE CHANGES AND A PROPOSED NEW DELIVERY SCHEDULE. NO CHANGES WILL BE ACCEPTED UNLESS WE HAVE A CHANGE ORDER SIGNED BY AN AUTHORIZED REPRESENTATIVE.

CUSTOMER SIGNATURE:	DATE:	
APPROVE APPROVE WITH CHANGES		

DRAWING INDEX

COVER SHEET: C1, C2

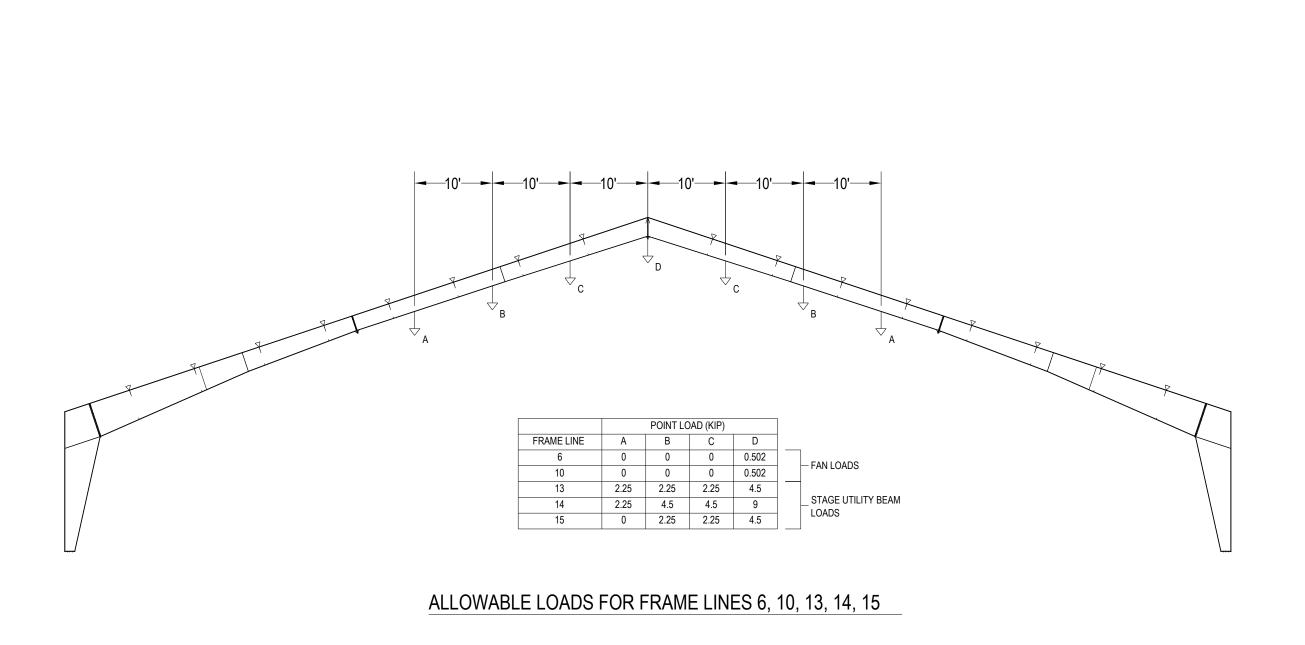
ANCHOR BOLT PLAN: B1, B2

ANCHOR BOLT REACTIONS: BR1
PRIMARY PLANS / SECTIONS: E1, E2, E3, E4, E5, E6, E7, E8, E9, E10

DETAILS: D1, D2, D3, D4

7877479

9123980

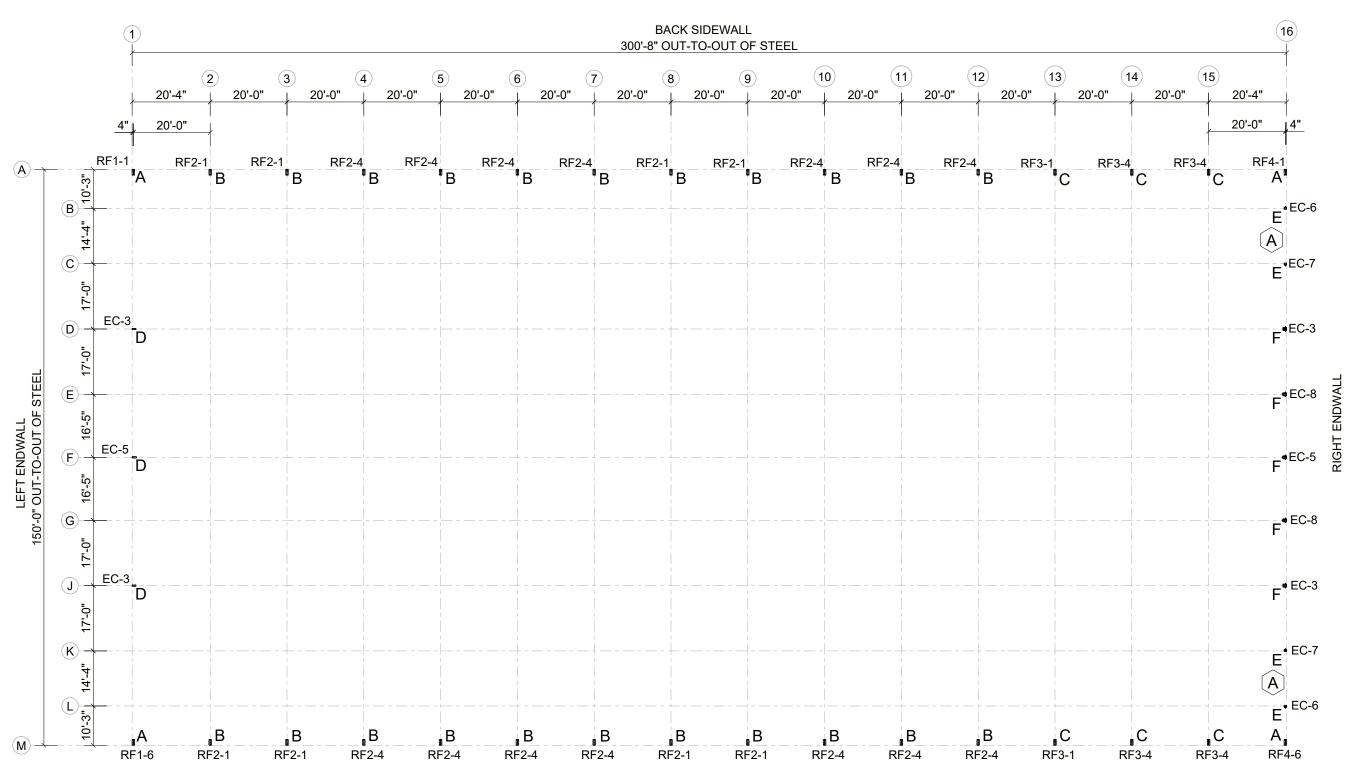

ORDER #

CUSTOMER #:

PROFESSIONAL	SEAL	

CUSTOMER INFORMATION: LONDON TOURISM AND PARKS 529 SMIN ST ONDON 100 MIN ST	
LONDON, KT 40/4 I-1942 CUSTOMER CONTACT:	CONTACT PHONE:
CHRIS ROBINSON	859-806-0086
STRUCTURE SKU #:	
00417	
STRUCTURE SIZE:	
150-0" x 300'-8" x 18'-0"	
SHEET TITLE:	
COVER PAGE	

DRAWING DETAILS							
RAWN BY: SB			BN	CREATION	DATE:	10/17/2024	
REVISIONS:							
1	TAB	11/05/2024	INCR	EASED C	OLLAT	ERAL LOAD	
NO.	BY:	DATE:		DES	CRIPTIO	ON:	
NO SCALE					С	1	
SHEET SIZE: 11X17			SHE	ET:	U	1	



STOMER INFORMATION:		
ONDON TOURISM AND PARKS		
29 S MAIN ST		
ONDON, KY 40741-1942		
STOMER CONTACT:	CONTACT PHONE:	
HRIS ROBINSON	829-806-0086	PR(
		OFE
RUCTURE SKU #:		ESS
0417		SIC
		NA
RUCTURE SIZE:		L S
50'-0" x 300'-8" x 18'-0"		EΑ
		L
EET TITLE:		
ADDITIONAL COLLATERAL LOAD		

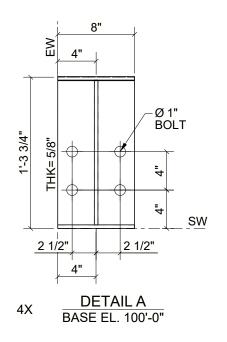
_											
DRAWING DETAILS											
DRAW	N BY:	SE	BN CREA	TION DATE:	10/17/2024						
			REVISIONS	:							
1	TAB	11/05/2024	INCREASE	REASED COLLATERAL LOAD							
NO. B		DATE:	DESCRIPTION:		ON:						
	NO SC	ALE	OUEET C2		· · ·						
S	HEET SIZ	E: 11X17	SHEET:	C	,Z						

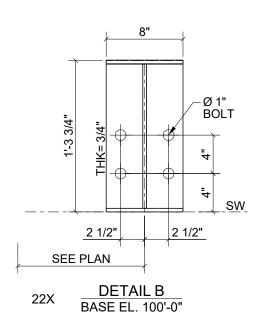
FRONT SIDEWALL

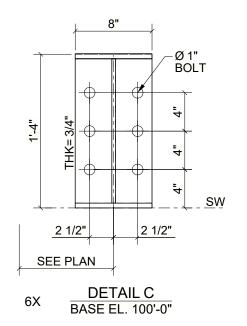
ANCHOR BOLT PLAN

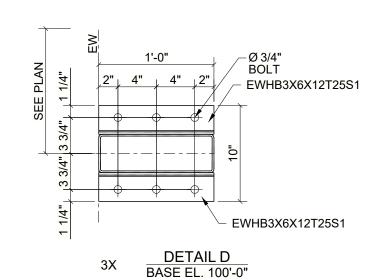
NOTE: ALL BASE PLATES @ 100'-0" (U.N.O.)

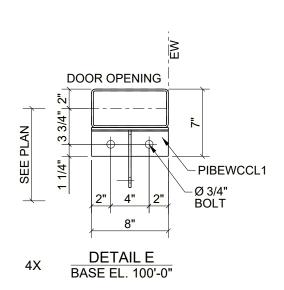
ClearSpan

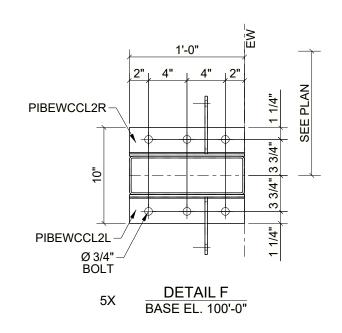

ENGINEERING SERVICES & PRODUCTS CO.
1404 (SIST) APPLANES SW
D P.563,876 (13)
WWW CLEARSOLOM
WWW CLEARSOLOM


ORDER #: 7877479


CUSTOMER #: 9123980


	CONTACT PHONE:	9800-908-658							
CUSTOMER INFORMATION: LONDON TOURISM AND PARKS 529 S MAIN ST LONDON, KY 40741-1942	CUSTOMER CONTACT:	CHRIS ROBINSON	STRUCTURE SKU #:	00417	STRUCTURE SIZE:	150'-0" x 300'-8" x 18'-0"	SHEET ПП.Е:	ANCHOR BOLT PLAN	


		DRA	AWING	DETAIL	.S	
DRAW	N BY:	SE	BN	CREATIO	N DATE:	10/17/2024
			REVIS	SIONS:		
1	TAB	11/05/2024	INCR	EASED	COLLAT	ERAL LOAD
NO.	BY:	DATE:		D	ESCRIPTI	ON:
	NO SC	ALE			ח	1
5	SHEET SIZ	E: 11X17	SHE	ET:	D) I



NOTE: "Dia "DIMENSIONS SHOWN REPRESENT REQUIRED ANCHOR BOLT DIAMETER. USE TABLE BELOW TO DETERMINE BASE PLATE ANCHOR HOLE SIZE PER ANCHOR DIAMETER.

ANCHOR BOLT DIAMETER	BASE PLATE ANCHOR HOLE SIZE	PROJECTION
1/2 "	5/8 "	3 "
5/8 "	3/4 "	3 "
3/4 "	7/8 "	3 "
1"	1 1/8 "	3 "
1 1/4 "	1 3/8 "	3 "

ANCHOR BOLT SETTING NOTE

1) THE ANCHOR BOLT SETTINGS SHOWN ON THESE DRAWINGS NOT ONLY INDICATE WHERE THE ANCHOR BOLTS ARE TO BE PLACED, BUT ALSO THE FOOTPRINT OF THE BUILDING. IT IS ESSENTIAL THAT THESE BOLT PATTERNS BE FOLLOWED. IN THE EVENT THAT THESE SETTINGS DIFFER FROM THE FOUNDATION PLANS, THE BUILDING MANUFACTURER MUST BE CONTACTED IMMEDIATELY.

TYPICAL BASE PLATE ELEVATION

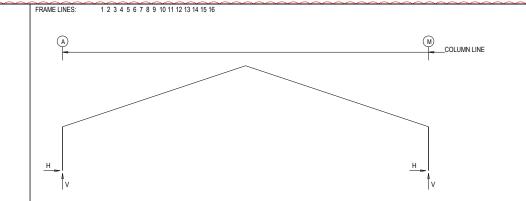
FINISHED FLOOR = 100'-0" BOTTOM OF BASE PLATE ELEVATION = 100'-0" (U.N.O)

ANCHOR BOLT PLAN GENERAL NOTES

- 1) THE SPECIFIED ANCHOR ROD DIAMETER ASSUMES F1554 GRADE 36 UNLESS NOTED OTHERWISE. ANCHOR ROD MATERIAL OF EQUAL DIAMETER MEETING OR EXCEEDING THE STRENGTH REQUIREMENTS SET FORTH ON THESE DRAWINGS MAY BE UTILIZED AT THE DISCRETION OF THE FOUNDATION DESIGN ENGINEER. ANCHOR ROD EMBEDMENT LENGTH SHALL BE DETERMINED BY THE FOUNDATION DESIGN ENGINEER.
- 2) THE FOUNDATION AND ANCHORS ARE CRITICAL ELEMENTS FOR THE BUILDING TO FUNCTION AS DESIGNED. UNLESS NOTED OTHERWISE
- ON SHEET C1, THE OWNER IS RESPONSIBLE FOR ENSURING THE FOUNDATION IS DESIGNED FOR THE BUILDING BY A PROFESSIONAL IN ACCORDANCE WITH LOCAL REQUIREMENTS.
- 3) ALL ANCHOR RODS, FLAT WASHERS FOR ANCHOR RODS, EXPANSION BOLTS, AS WELL AS ALL CONCRETE/MASONRY EMBEDMENT PLATES ARE NOT BY BUILDING MANUFACTURER, UNLESS NOTED OTHERWISE.
- 4) THIS DRAWING IS NOT TO SCALE.

5) THE ANCHOR BOLT LOCATIONS PROVIDED BY BUILDING MANUFACTURER SATISFY PERTINENT REQUIREMENTS FOR THE DESIGN OF THE MATERIALS SUPPLIED BY THE BUILDING MANUFACTURER. PLEASE NOTE THAT THESE REQUIREMENTS MAY NOT SATISFY ALL ANCHOR BOLT EDGE DISTANCE REQUIREMENTS DEPENDING ON THE DETAILS OF THE FOUNDATION DESIGN. BECAUSE FOUNDATION DESIGN IS NOT WITHIN THE BUILDING SCOPE OF WORK, IT IS THE RESPONSIBILITY OF THE QUALIFIED PROFESSIONAL DESIGNING THE FOUNDATION TO MAKE SURE THAT SUFFICIENT CONCRETE EDGE DISTANCE IS PROVIDED FOR THE ANCHOR BOLTS IN THE DETAILS OF THE FOUNDATION DESIGN.

9123980


ORDER #: 7877479

CUSTOMER #:

CUSTOMER INFORMATION LONDON TOURISM AND PARKS 229 S MAIN ST LONDON, KY 40741-1942 CUSTOMER CONTACT:	0
CHRIS ROBINSON	859-806-0086
STRUCTURE SKU #: 00417	
STRUCTURE SIZE: 150'-0" x 300'-8" x 18'-0"	
SHEET TITLE: ANCHOR BOLT PATTERN	

		DRA	AWING	DETAI	LS	
DRAW	N BY:	SE	BN	CREATIC	N DATE:	10/17/2024
			REVIS	SIONS:		
1	TAB	11/05/2024	INCF	EASED	COLLAT	ERAL LOAD
NO.	BY:	DATE:			ESCRIPTI	ON:
	NO SC	ALE			D	2
8	HEET SIZ	E: 11X17	SHE	ET:	D	_

NOTES FOR REACTIONS	RIGIE	FRAME	: BAS	SIC COLUMN	REACTION	S (k)								
All loading conditions are examined and only maximum/minimum H or V and the corresponding H or V are reported.	Frame	Column	Dead	Vert	Collateral Horz	. ,	Live- Horz	Vert	Sno	w Vert	Wind_ Horz	Left1- Vert	-Wind_R Horz	light1- Vert
Positive reactions are as shown in the sketch. Foundation loads are in opposite directions.	1* 1*	A M	8.42 9.7 -8.42 9.7	76 3.	.18	3.43 3.43	9.04 -9.04	9.77 9.77	9.79 -9.79	10.57 10.57	-22.80 16.12	-26.44 -21.92	-16.12 22.80	-21.92 -26.44
3. Bracing reactions are in the plane of the brace with the H pointing away from the braced bay. The vertical reaction is downward. 4. Building reactions are based on the following building data: Width 1 = 150.0	Frame Id 1* 1*	Column Line A M	Wind_Left2- Horz -16.61 -17. 9.92 -12.			ht2- Vert -12.89 -17.41	Wind_I Horz -16.12 20.63	_ong1- Vert -31.35 -26.37	Wind_ Horz -20.63 16.12	Long2- Vert -26.37 -31.34	-Seismid Horz -1.05 -1.05	Left Vert -0.23 0.23	Seismic Horz 1.05 1.05	_Right Vert 0.23 -0.23
Length	Frame Id 1*	Column Line A M	-Seismic_Long	9 Vert 77 8.	F1UNB_SL Horz .54		F1UNB_ Horz 8.54 -8.53							
Left Endwall (psf) = 2.0 Right Endwall (psf) = 2.0 Front Sidewall (psf) = 2.0 Back Sidewall (psf) = 2.0	Frame Id 2* 2*	Column Line A M	Dead	Vert 65 6.	Collateral Horz .15		Live- Horz 17.51 -17.51		Sno Horz 18.96 -18.96	w Vert 20.46 20.46	Wind_ Horz -40.21 27.96	Left1- Vert -45.86 -38.56	-Wind_F Horz -27.96 40.21	kight1- Vert -38.56 -45.86
Roof Live Load (psf) = 20.0 Frame Live Load (psf) = 12.0 Collateral Load (psf) = 4.0 Snow Load (psf) = 13.0 Wind Speed (mph) = 120.0 Wind Code ERBC 18 (IBC 15) Exosure C	Frame Id 2* 2*	Column Line A M	Wind_Left2-	Vert .97 -15	-Wind_Rigi Horz 5.56		Wind_I Horz -27.16 34.44		Wind_ Horz -34.44 27.16		-Seismid Horz -1.54 -1.54		Seismic Horz 1.54 1.54	
Closure	Frame Id 2* 2*	Column Line A M	-Seismic_Long Horz 0.00 -3.7 0.00 -3.7	Vert 77 16	F2UNB_SL Horz 5.53 6.53	_L- Vert 20.01 12.43	F2UNB_ Horz 16.53 -16.53	SL_R- Vert 12.43 20.01						
Importance - Seismic	Frame Id 3* 3*	Column Line A M	Dead Horz 7.6 5.92 7.6 -5.92 7.6		Collateral Horz .54 .54	Vert 6.90 6.90	Live- Horz 17.51 -17.51	Vert 18.90 18.90	Sno Horz 18.96 -18.96	Vert 20.46 20.46	Wind_ Horz -33.32 21.47	Left1- Vert -37.24 -31.86	-Wind_F Horz -21.47 33.32	Vert -31.86 -37.24
2 Dead-Vollateral-Snow-Snow_Drift 3 Dead+Collateral-Snow+Slide_Snow 4 0.6Dead+0.6Wind_Left1 5 0.6Dead+0.6Wind_Right1 6 0.6Dead+0.6Wind_Lord1L	Frame Id 3* 3*	Column Line A M	Wind_Left2- Horz -22.11 -19. 10.27 -14.	Vert 1.78 -10 1.40 22		ht2- Vert -14.40 -19.78	Wind_I Horz -21.88 27.05	_ong1- Vert -37.30 -31.59	Wind_ Horz -27.05 21.88	Long2- Vert -31.59 -37.30	-Seismid Horz -1.54 -1.54	Left Vert -0.34 0.34	Seismic Horz 1.54 1.54	_Right Vert 0.34 -0.34
7 0.6Dead-0.6W/nd_Long1R 8 0.6Dead-0.6W/nd_Long2L 9 0.6Dead-0.6W/nd_Long2R 10 1.04Dead-1.04C/olletral-0.7Seismic_LongR 11 0.6Dead-0.6W/nd_Right2-0.6W/nd_Suction	Frame Id 3* 3*	Column Line A M	16.53 20.	Vert .01 16	F3UNB_SL Horz 5.53 5.53	R- Vert 12.43 20.01								
12 0.6Dead+0.6Wind_Pressure+0.6Wind_Long2L ENDWALL COLUMN: BASIC COLUMN REACTIONS (k):	Frame Id 4* 4*	Column Line A M	Dead Horz 7.10 9.0 -7.10 9.0		Collateral Horz 3.88 3.88	Vert 23.18 23.18	Live- Horz 17.52 -17.52	Vert 18.90 18.90	Sno Horz 18.96 -18.96	Vert 20.46 20.46	Wind_ Horz -33.31 21.47	Left1- Vert -37.24 -31.86	-Wind_F Horz -21.47 33.31	Vert -31.86 -37.24
Frame Column Line Line Gravity Uplift Outward Inward 1 D 0.92 1.93 2.13 3.08 1 F 1.31 0.93 3.48 4.77 1 J 0.92 1.62 2.32 2.84	Frame Id 4* 4*	Column Line A M	Wind_Left2- Horz -22.10 -19. 10.27 -14.			ht2- Vert -14.40 -19.78	Wind_I Horz -21.88 27.05	_ong1- Vert -37.30 -31.59	Wind_ Horz -27.05 21.88	Vert -31.59 -37.30	-Seismid Horz -1.54 -1.54	Left Vert -0.34 0.34	Seismic Horz 1.54 1.54	_Right Vert 0.34 -0.34
16 B 0.28 0.75 2.03 2.58 16 C 0.36 0.95 2.82 3.50 16 D 0.61 0.80 3.81 4.70 16 E 0.81 0.58 4.43 5.45	Frame Id 4* 4*	Column Line A M	16.54 20.	Vert .01 16	F4UNB_SL Horz 5.55 6.54	_R- Vert 12.43 20.01								
16 F 0.89 0.48 4.78 5.91 16 G 0.81 0.58 4.43 5.45 16 J 0.61 0.80 3.81 4.70 16 K 0.36 0.95 2.82 3.50 16 L 0.28 0.75 2.03 2.58	Frame Id 5* 5*	Column Line A M	Dead Horz 7.10 9.0 -7.10 9.0		Collateral Horz 5.12 5.12	Vert 13.73 13.73	Live- Horz 17.52 -17.52	Vert 18.90 18.90	Sno Horz 18.96 -18.96	Vert 20.46 20.46	Wind_ Horz -40.20 27.95	Left1- Vert -45.86 -38.56	-Wind_F Horz -27.95 40.20	vert -38.56 -45.86
ENDWALL COLUMN: MAXIMUM REACTIONS (k): Frame Column	Frame Id 5* 5*	Column Line A M	Wind_Left2- Horz - -28.07 -27. 15.55 -20.			ht2- Vert -20.71 -27.97	Wind_I Horz -27.16 34.44	_ong1- Vert -50.27 -42.23	Wind_ Horz -34.44 27.16	Long2- Vert -42.24 -50.26	-Seismid Horz -1.54 -1.54	:_Left Vert -0.34 0.34	Seismic Horz 1.54 1.54	_Right Vert 0.34 -0.34
Line Line Gravity Uplift Outward Inward 1 D 1.22 1.16 1.29 1.85 1 F 1.90 0.56 2.10 2.88 1 J 1.52 0.97 1.39 1.72 16 B 0.28 0.45 1.22 1.55	Frame Id 5* 5*	Column Line A M		Vert 77 16		_L- Vert 20.01 12.43	F5UNB_ Horz 16.55 -16.54	SL_R- Vert 12.43 20.01						
16 C 0.36 0.57 1.69 2.10 16 D 0.61 0.48 2.28 2.82 16 E 0.81 0.35 2.65 3.27 16 F 0.89 0.29 2.87 3.54	Frame Id 6* 6*	Column Line A M		Vert 99 3.	Collateral Horz .18 .18	Vert 3.43 3.43	Live- Horz 9.04 -9.04	Vert 9.77 9.77	Sno Horz 9.79 -9.79	w Vert 10.57 10.57	Wind_ Horz -22.80 16.12	Left1- Vert -26.44 -21.92	-Wind_F Horz -16.12 22.80	Vert -21.92 -26.44
16 G 0.81 0.35 2.65 3.27 16 J 0.61 0.48 2.28 2.82 16 K 0.36 0.57 1.69 2.10 16 L 0.28 0.45 1.22 1.55	Frame Id 6* 6*	Column Line A M		Vert .41 -9	.92	ht2- Vert -12.89 -17.41	Wind_I Horz -16.12 20.63	_ong1- Vert -31.35 -26.37	Wind_ Horz -20.63 16.12	Long2- Vert -26.37 -31.34	-Seismid Horz -1.05 -1.05	Left Vert -0.23 0.23	Seismic Horz 1.05 1.05	_Right Vert 0.23 -0.23
	Frame Id 6* 6*	Column Line A M		Vert .77 8.	F6UNB_SL Horz .54 .54	_L- Vert 10.35 6.43	F6UNB_ Horz 8.54 -8.53	SL_R- Vert 6.43 10.35						
	1* 2* 3* 4* 5* 6*	Frame lines Frame lines Frame lines Frame lines Frame lines	6 6 6	1 2 3 8 4 5 6 13 14 15 16		11 12								

RIGID F	RAME:	MAXIMUM	REACTIONS		RIGID I	FRAME:	MAXIMUN	M REACTIONS	
Frm	Col	Coli Load	umn_Reactions(k)	Frm	Col	Co	olumn_Reactions(k)
ld	Line	ld	Horz	Vert	Id	Line	ld	Horz	Vert
1*	Α	3 4 6	21.39 -8.63 -4.62	23.76 -10.01 -12.95	2*	Α	3 4 6	31.03 -20.57 -12.75	34.75 -22.92 -25.57
1*	М	3 3 5 8	-21.39 -21.39 8.63 4.62	23.76 23.76 -10.01 -12.95	2*	М	3 5 8	-31.03 20.57 12.75	34.75 -22.92 -25.57
1*	Frame lines:	1			2*	Frame lines:	2 3 8	9	
IGID F	RAME:	MAXIMUM	REACTIONS		RIGID I	FRAME:	MAXIMUN	M REACTIONS	
			umn_Reactions(k)				olumn_Reactions(k)
Frm Id	Col Line	Load Id	Horz	Vert	Frm Id	Col Line	Load Id	Horz	Vert
3*	Α	3 4 7	31.41 -16.44 -9.58	35.02 -17.75 -17.79	4*	А	1 4 6	54.94 -15.73 -8.87	52.69 -16.91 -16.95
3*	М	2 3 5 9	-31.41 -31.41 16.44 9.58	35.02 35.02 -17.75 -17.79	4*	М	1 3 5 9	-54.94 -54.94 15.73 8.87	52.69 52.69 -16.91 -16.95
3*	Frame lines:	4 5 6	7 10 11	12	4*	Frame lines:	13		
IGID F	RAME:	MAXIMUM	REACTIONS		RIGID I	FRAME:	MAXIMUN	M REACTIONS	
			umn_Reactions(k)				olumn_Reactions(k)
Frm Id	Col Line	Load Id	Horz	Vert	Frm Id	Col Line	Load Id	Horz	Vert
5*	A	1 4 6	42.18 -19.86 -12.04	43.24 -22.09 -24.73	6*	Α	3 4 6	17.34 -11.06 -7.05	19.99 -12.27 -15.22
5*	М	3 5 8	-42.18 19.86 12.04	43.24 -22.09 -24.73	6*	М	1 3 5 8	-17.34 -17.34 11.06 7.05	19.99 19.99 -12.27 -15.22
5*	Frame lines:	14 15					0	7.00	-10.22

Reactions in plane of wall
Reactions(k)
Wind Seismic
Horz Horz

2.36 2.36 2.36 2.36 2.36

2.37 2.37 2.37 2.37 2.37

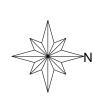
2.69 2.69 2.69 2.69 2.69

2.69 2.69 2.69 2.69 2.69

Wall — Col

R_EW 16 B_SW A 15,16 14,15 8,9 2,3 1,2

(b)Wind bent in bay, base above finish floor (h)Rigid frame at endwall

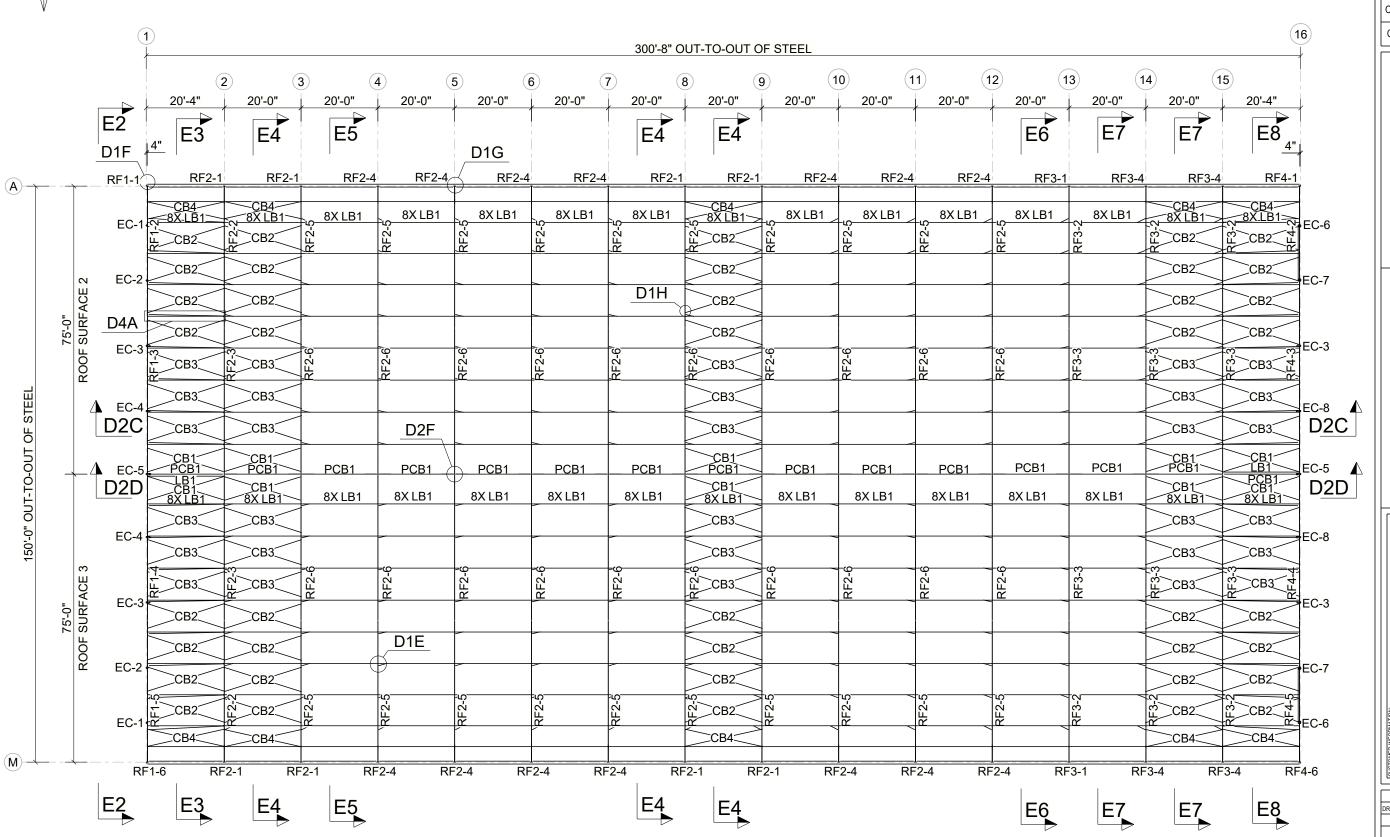

Reactions for seismic represent shear force, Eh Reaction values shown are unfactored

	ClearSpan ENGINEERING SERVICES & PRODUCTS CO. 1440 1971 AVENUE SW
	140 18TH AVENUES W DYENSYILE, IA 5200 P.580,375 C113 WWW.EGAPCO.COM WWW.CLEARSPAN.COM
K	ORDER #· 7877479

CUSTOMER #: 9123980

	OUSTONER INFORMATION: LONDON TOURISM AND PARKS 529 S MAIN ST LONDON, KY 40741-1942	CT:	NOS				" x 18-0"		ANCHOR BOLT REACTIONS
	CUSTOMER INFORMATION: LONDON TOURISM A 529 S MAIN ST LONDON, KY 40741-1942	CUSTOMER CONTACT:	CHRIS ROBINSON	STRUCTURE SKU #:	00417	STRUCTURE SIZE:	150'-0" x 300'-8" x 18'-0"	SHEET TITLE:	ANCHOR BOI
_)									

		DRA	AWING	DETAIL	_S	
DRAW	N BY:	SE	3N	CREATIC	N DATE:	10/17/2024
			REVIS	SIONS:		
1	TAB	11/05/2024	INCR	EASED	COLLAT	ERAL LOAD
NO.	BY:	DATE:		D	ESCRIPTI	ON:
	NO SC	CALE			D	R1
5	SHEET SIZ	E: 11X17	SHE	ET:	D	ΓI


BRACE	TABLE
MARK	MATERIAL
CB1	BR1/2
CB2	BR5/8
CB3	BR1/2
CB4	BR5/8
LB1	HSS4X4X1/8
PCB1	HSS8X4X1/4

ClearSpan

ENGINEERING SERVICES & PRODUCTS CO.
1400 ISITAL PARKES SW.
1500 P. 263,875,6113
WWW.CLEARSPACCO.M.
WWW.CLEARSPACCO.M.

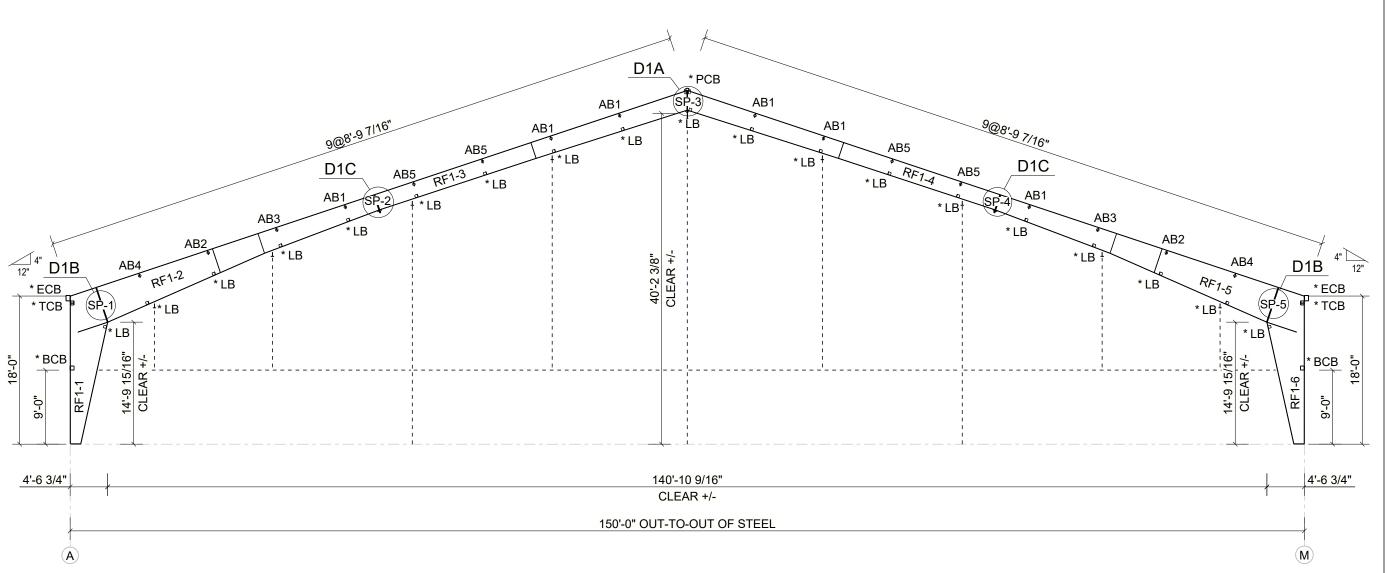
ORDER #: 7877479

CUSTOMER #: 9123980

150'-0" x 300'-8" x 18'-0"

PROFESSIONAL SEAL

ROOF FRAMING PLAN


			Web Depth	Web	Plate	Outside Flange	Inside Flange	
Mark	Weight	Length	Start/End	Thick	Length	W x Thk x Length	W x Thk x Length	
RF1-1	1380	19'-2 1/8"	15.0 /54.0	0.375	18'-11 1/2"	8 x 3/8" x 17'-11 1/16" 8 x 5/16" x 3'-3 1/4"	8 x 3/8" x 15'-0 5/8"	
RF1-2	1804	35'-7 9/16"	53.0 /36.5 36.5 /30.0 30.0 /23.0	0.250 0.250 0.188	14'-10 3/16" 5'-10" 14'-10"	8 x 5/16" x 35'-6 3/16"	8 x 5/16" x 20'-9 1/4" 8 x 5/16" x 14'-10 1/8"	
RF1-3	1410	40'-1 3/16"	23.0 /24.0 24.0 /28.5	0.188 0.188	20'-0" 20'-0"	8 x 5/16" x 40'-0"	8 x 1/4" x 20'-0" 8 x 1/4" x 19'-2 15/16"	
RF1-4	1414	40'-1 3/16"	23.0 /24.0 24.0 /28.5	0.188 0.188	20'-0" 20'-0"	8 x 5/16" x 40'-0"	8 x 1/4" x 20'-0" 8 x 1/4" x 19'-2 15/16"	
RF1-5	1804	35'-7 9/16"	53.0 /36.5 36.5 /30.0 30.0 /23.0	0.250 0.250 0.188	14'-10 3/16" 5'-10" 14'-10"	8 x 5/16" x 35'-6 3/16"	8 x 5/16" x 20'-9 1/4" 8 x 5/16" x 14'-10 1/8"	
RF1-6	1380	19'-2 1/8"	15.0 /54.0	0.375	18'-11 1/2"	8 x 3/8" x 17'-11 1/16" 8 x 5/16" x 3'-3 1/4"	8 x 3/8" x 15'-0 5/8"	

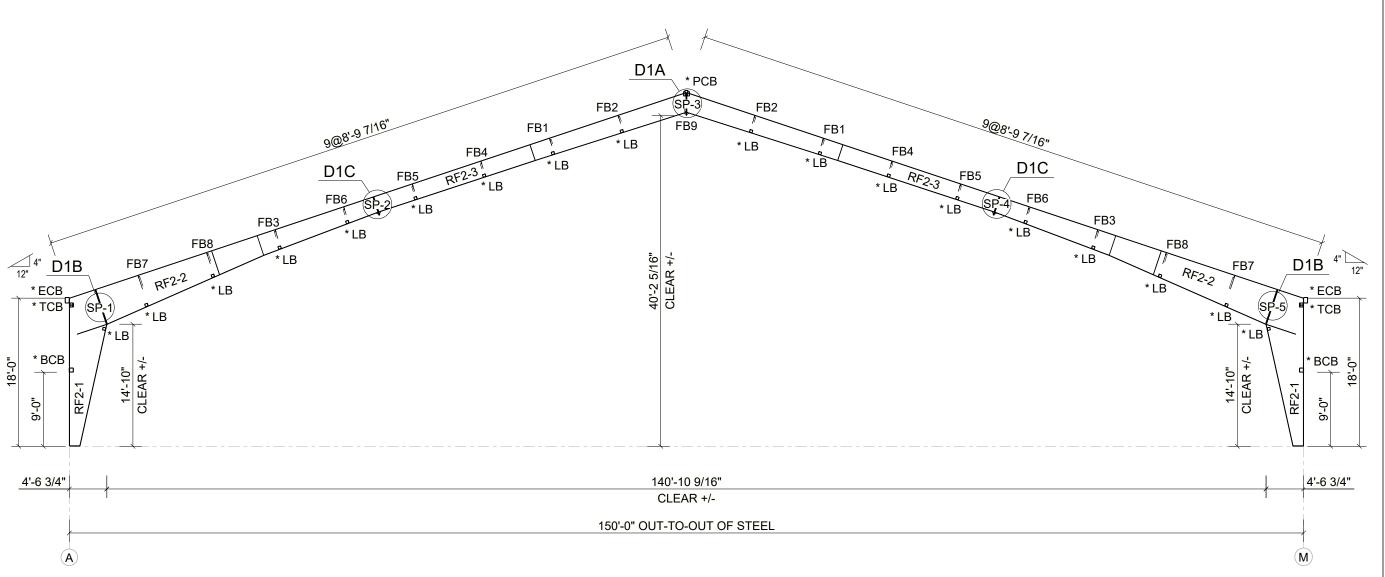
STIFFENER TABLE							
	PLATE SIZE						
MARK	WIDTH	THICK	LENGTH				
RF1-1	3.880	0.250	45.11				
RF1-6	3.880	0.250	45.11				

SPLICE BOLT TABLE						
MARK	QTY	BOLT SIZE	TYPE	PLATE THK		
SP-1	12	Ø1" X 3"	A325N	5/8"		
SP-2	10	Ø3/4" X 2 1/2"	A325N	3/4"		
SP-3	8	Ø3/4" X 2"	A325N	3/8"		
SP-4	10	Ø3/4" X 2 1/2"	A325N	3/4"		
SP-5	12	Ø1" X 3"	A325N	5/8"		

BRACE	TABLE
MARK	MATERIAL
AB1	HSS4X10GA
AB2	HSS4X10GA
AB3	HSS4X10GA
AB4	HSS4X10GA
AB5	HSS4X10GA

RIGID FRAME ELEVATION: FRAME LINE 1

PROFESSIONAL SEAL


	344 * 14		Web Depth	Web I	Plate	Outside Flange	Inside Flange
Mark	Weight	Length	Start/End	Thick	Length	W x Thk x Length	W x Thk x Length
RF2-1	1380	19'-1 7/8"	15.0 /54.0	0.375	18'-11 3/8"	8 x 3/8" x 17'-10 15/16" 8 x 1/4" x 3'-3 1/4"	8 x 3/8" x 15'-0 1/2"
RF2-2	1794	35'-7 5/16"	53.0 /36.5 36.5 /30.0 30.0 /23.0	0.250 0.250 0.188	14'-9 15/16" 5'-10" 14'-9 7/8"	8 x 1/4" x 20'-3 15/16" 8 x 5/16" x 15'-1 7/8"	8 x 3/8" x 20'-9" 8 x 3/8" x 14'-10"
RF2-3	1393	40'-1 5/16"	23.0 /24.0 24.0 /28.5	0.188	20'-0" 20'-0"	8 x 5/16" x 40'-0"	8 x 5/16" x 20'-0" 8 x 1/4" x 19'-2 15/16"

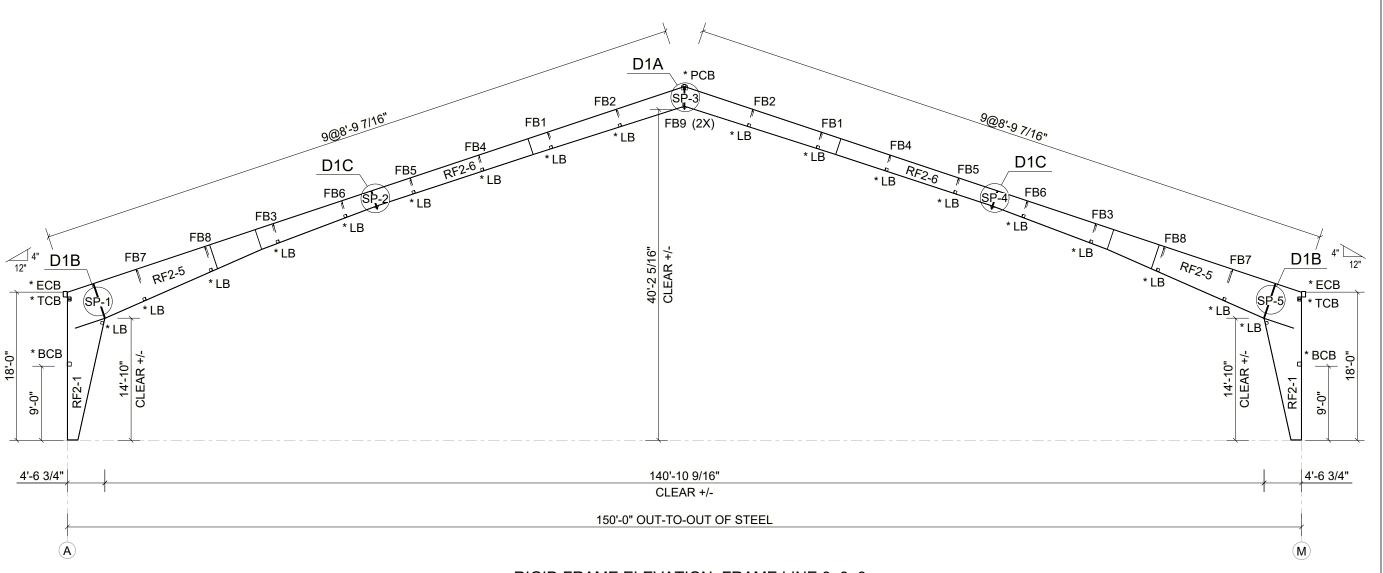
STIFFENER TABLE								
	PLATE SIZE							
MARK	WIDTH	THICK	LENGTH					
RF2-1	3.880	0.250	45.11					

SPLICE BOLT TABLE							
MARK	QTY	BOLT SIZE	TYPE	PLATE THK			
SP-1	14	Ø3/4" X 2 1/2"	A325N	3/4"			
SP-2	10	Ø1" X 3"	A325N	3/4"			
SP-3	8	Ø3/4" X 2"	A325N	1/2"			
SP-4	10	Ø1" X 3"	A325N	3/4"			
SP-5	14	Ø3/4" X 2 1/2"	A325N	3/4"			

BRACE TABLE				
MARK	MATERIAL			
FB1	L2X2X1/8			
FB2	L2X2X1/8			
FB3	L2X2X1/8			
FB4	L2X2X1/8			
FB5	L2X2X1/8			
FB6	L2X2X1/8			
FB7	L2X2X1/8			
FB8	L2X2X1/8			
FB9	L3X3X3/16			

RIGID FRAME ELEVATION: FRAME LINE 2

PROFESSIONAL SEAL


Mark We		ngth	Start/End	Thirt			
RF2-1	4000 401		Otal (Life	Thick	Length	W x Thk x Length	W x Thk x Length
	1380 19'	-1 7/8"	15.0 /54.0	0.375	18'-11 3/8"	8 x 3/8" x 17'-10 15/16" 8 x 1/4" x 3'-3 1/4"	8 x 3/8" x 15'-0 1/2"
RF2-5	1790 35'	-7 5/16"	53.0 /36.5 36.5 /30.0 30.0 /23.0	0.250 0.250 0.188	14'-9 15/16" 5'-10" 14'-9 7/8"	8 x 1/4" x 20'-3 15/16" 8 x 5/16" x 15'-1 7/8"	8 x 3/8" x 20'-9" 8 x 3/8" x 14'-10"
RF2-6	1391 40'	-1 5/16"	23.0 /24.0 24.0 /28.5	0.188 0.188	20'-0" 20'-0"	8 x 5/16" x 40'-0"	8 x 5/16" x 20'-0" 8 x 1/4" x 19'-2 15/16"

STIFFENER TABLE						
	PLATE SIZE					
MARK	WIDTH	THICK	LENGTH			
RF2-1	3.880	0.250	45.11			

SPLICE BOLT TABLE							
MARK	QTY	BOLT SIZE	TYPE	PLATE THK			
SP-1	14	Ø3/4" X 2 1/2"	A325N	3/4"			
SP-2	10	Ø1" X 3"	A325N	3/4"			
SP-3	8	Ø3/4" X 2"	A325N	1/2"			
SP-4	10	Ø1" X 3"	A325N	3/4"			
SP-5	14	Ø3/4" X 2 1/2"	A325N	3/4"			

BRACE	TABLE
MARK	MATERIAL
FB1	L2X2X1/8
FB2	L2X2X1/8
FB3	L2X2X1/8
FB4	L2X2X1/8
FB5	L2X2X1/8
FB6	L2X2X1/8
FB7	L2X2X1/8
FB8	L2X2X1/8
FB9	L3X3X3/16

RIGID FRAME ELEVATION: FRAME LINE 3, 8, 9

DRAWING DETAILS

DRAWN BY: SBN | OREATION DATE: 10/17/2024

REVISIONS:

1 TAB 11/05/2024 INCREASED COLLATERAL LOAD

NO. BY: DATE: DESCRIPTION:

NO SCALE

SHEET SIZE: 11X17

SHEET: E4

PROFESSIONAL SEAL

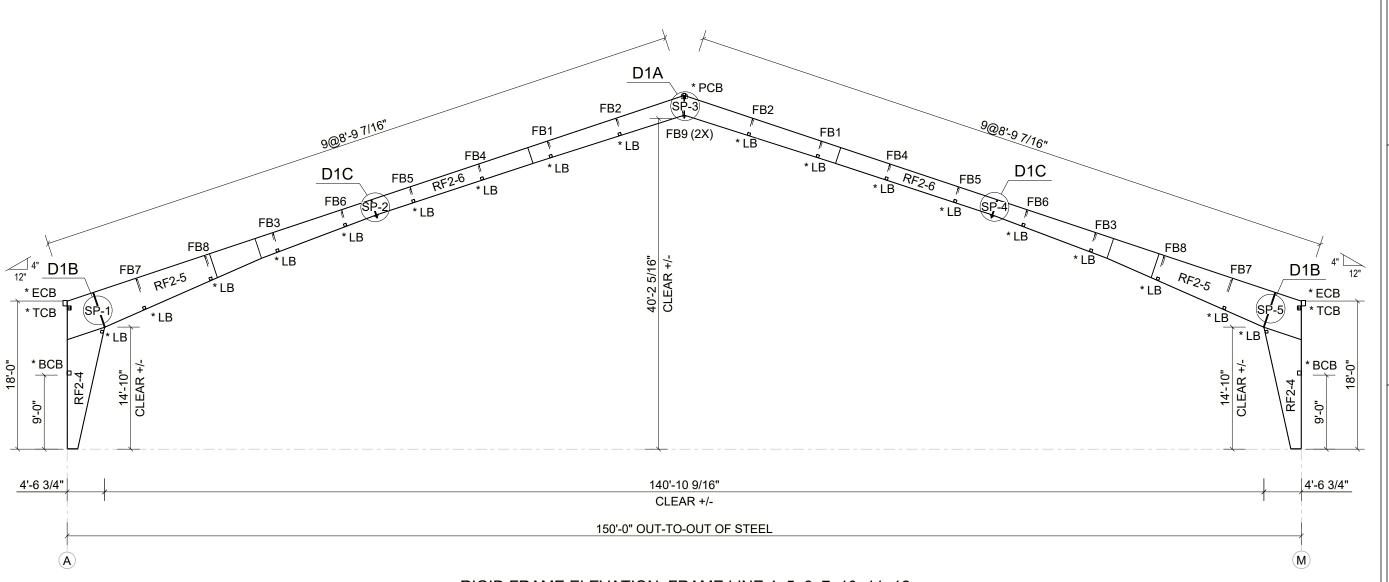
MEMBER	RTABLE							STIFFE	NER TABLE	Ė
	344 * 14		Web Depth	Web	Plate	Outside Flange	Inside Flange		Р	LAT
Mark	Weight	Length	Start/End	Thick	Length	W x Thk x Length	W x Thk x Length	MARK	WIDTH	ТН
RF2-4	1386	19'-1 7/8"	15.0 /54.0	0.375	18'-11 3/8"	8 x 3/8" x 17'-10 15/16" 8 x 1/4" x 3'-3 1/4"	8 x 3/8" x 15'-0 1/2"	RF2-4		0.2
RF2-5	1790	35'-7 5/16"	53.0 /36.5 36.5 /30.0 30.0 /23.0	0.250 0.250 0.188	14'-9 15/16" 5'-10" 14'-9 7/8"	8 x 1/4" x 20'-3 15/16" 8 x 5/16" x 15'-1 7/8"	8 x 3/8" x 20'-9" 8 x 3/8" x 14'-10"			
RF2-6	1391	40'-1 5/16"	23.0 /24.0 24.0 /28.5	0.188 0.188	20'-0" 20'-0"	8 x 5/16" x 40'-0"	8 x 5/16" x 20'-0" 8 x 1/4" x 19'-2 15/16"			
	1									

l	STIFFENI	ER TABLI	E			SPLICE E	BOLT T	ABLE		
		P	LATE SI	ZE		MARK	QTY	BOLT SIZE	TYPE	Р
ı	MARK	WIDTH	THICK	LENGTH		SP-1	14	Ø3/4" X 2 1/2"	A325N	
	RF2-4	3.880	0.250	56.54		SP-2	10	Ø1" X 3"	A325N	
•					-	SP-3	8	Ø3/4" X 2"	A325N	
						SP-4	10	Ø1" X 3"	A325N	
						SP-5	14	Ø3/4" X 2 1/2"	A325N	
						SP-5	14	Ø3/4" X 2 1/2"	A32	5N

TYPE PLATE THK

3/4"

3/4"


1/2"

3/4" 3/4"

BRACE	TABLE
MARK	MATERIAL
FB1	L2X2X1/8
FB2	L2X2X1/8
FB3	L2X2X1/8
FB4	L2X2X1/8
FB5	L2X2X1/8
FB6	L2X2X1/8
FB7	L2X2X1/8
FB8	L2X2X1/8
FB9	L3X3X3/16

ORDER #: 7877479 CUSTOMER #: 9123980

RIGID FRAME ELEVATION: FRAME LINE 4, 5, 6, 7, 10, 11, 12

DRAWING DETAILS SBN CREATION DATE: 10/17/2024 REVISIONS:
 1
 TAB
 11/05/2024
 INCREASED COLLATERAL LOAD

 NO.
 BY:
 DATE:
 DESCRIPTION:
 NO SCALE E5 SHEET SIZE: 11X17 SHEET:

150'-0" x 300'-8" x 18'-0"

PROFESSIONAL SEAL

MEMBER	TABLE		•				_	STIFFEI	NER TABLE
Manda	147 - 1 - 1 - 4	1	Web Depth	Web		Outside Flange	Inside Flange		PLAT
Mark	Weight	Length	Start/End	Thick	Length	W x Thk x Length	W x Thk x Length	MARK	WIDTH TH
RF3-1	1559	19'-1 7/8"	15.0 /54.0	0.375	18'-11 3/16"	8 x 1/2" x 17'-10 3/4" 8 x 1/2" x 3'-3 3/16"	8 x 1/2" x 15'-0"	RF3-1	3.880 0.3
RF3-2	2544	35'-7 3/16"	53.0 /36.5 36.5 /30.0	0.313 0.313	14'-9 1/2" 5'-10"	8 x 1/2" x 35'-5 7/16"	8 x 5/8" x 20'-8 1/2" 8 x 5/8" x 14'-10 1/16"		
RF3-3	1860	40'-1 1/4"	30.0 /23.0 23.0 /24.0 24.0 /28.5	0.250 0.188 0.250	14'-9 15/16" 20'-0" 20'-0"	8 x 1/2" x 40'-0"	8 x 1/2" x 20'-0" 8 x 3/8" x 19'-2 7/8"		

		SPLICE E	BOLT T	ABLE		
LATE SIZE	[MARK	QTY	BOLT SIZE	TYPE	PLATE TH
THICK LENGTH	[:	SP-1	14 (Ø1 1/4" X 4"	A325N	1"
0.313 56.48	[:	SP-2	10	Ø3/4" X 2 1/2"	A325N	3/4"
	[:	SP-3	8	Ø3/4" X 2"	A325N	3/8"
	:	SP-4	10	Ø3/4" X 2 1/2"	A325N	3/4"
		SP-5	14 (Ø1 1/4" X 4"	A325N	1"

BRACE	TABLE
MARK	MATERIAL
FB1	L2X2X1/8
FB2	L2X2X1/8
FB3	L2X2X1/8
FB4	L2X2X1/8
FB5	L2X2X1/8
FB6	L2X2X1/8
FB7	L2X2X1/8
FB8	L2X2X1/8
FB9	L3X3X3/16

D1A * PCB FB2 FB9 (2X) *LB * LB D1C D1C 4" <u>D1B</u> FB7 D1B T RF3-2 * ECB * TCB (SP-1) 'TCB * LB 14'-9 11/16" CLEAR +/-14'-9 11/16" CLEAR +/-* BCB _0-* BCB RF3-1 9'-0" 4'-6 15/16" 140'-10 1/16" 4'-6 15/16" CLEAR +/-150'-0" OUT-TO-OUT OF STEEL

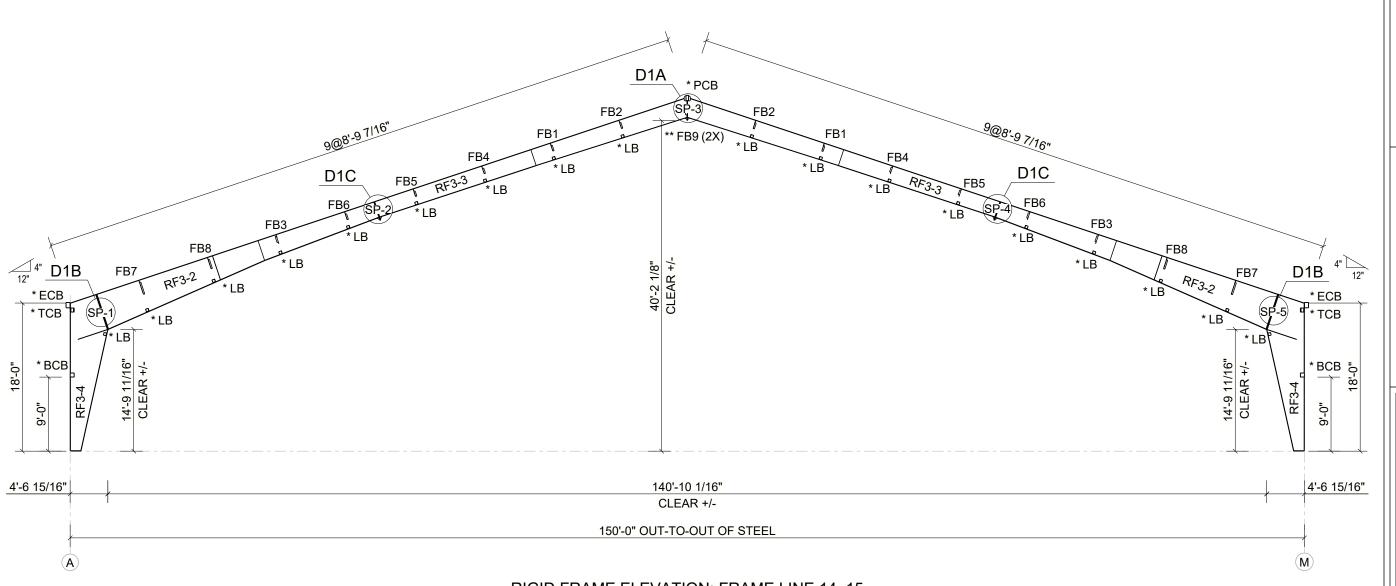
RIGID FRAME ELEVATION: FRAME LINE 13

PROFESSIONAL SEAL

MEMBE	R TABLE						
Mark	\\/aight	Longth	Web Depth	Web I		Outside Flange	Inside Flange
IVIAIK	Weight	Length	Start/End	Thick	Length	W x Thk x Length	W x Thk x Length
RF3-2	2544	35'-7 3/16"	53.0 / 36.5	0.313	14'-9 1/2"	8 x 1/2" x 35'-5 7/16"	8 x 5/8" x 20'-8 1/2"
	1		36.5 / 30.0	0.313	5'-10"	\ <u>\ 1</u>	8 x 5/8" x 14'-10 1/16"
			30.0 /23.0	0.250	14'-9 15/16"		
RF3-3	1860	40'-1 1/4"	23.0 /24.0	0.188	20'-0"	8 x 1/2" x 40'-0"	8 x 1/2" x 20'-0"
			24.0 / 28.5	0.250	20'-0"		8 x 3/8" x 19'-2 7/8"
RF3-4	1551	19'-1 7/8"	15.0 / 54.0	0.375	18'-11 3/16"	8 x 1/2" x 17'-10 3/4"	8 x 1/2" x 15'-0"
						8 x 1/2" x 3'-3 3/16"	

STIFFEN	ER TABLI	Ε							
	F	PLATE SIZE							
MARK	WIDTH	THICK	LENGTH						
RF3-4	3.880	0.313	45.19						

SPLICE E	SPLICE BOLT TABLE							
MARK	QTY	BOLT SIZE	TYPE	PLATE THK				
SP-1	14 (Ø1 1/4" X 4"	A325N	1"				
SP-2	10	Ø3/4" X 2 1/2"	A325N	3/4"				
SP-3	8	Ø3/4" X 2"	A325N	3/8"				
SP-4	10	Ø3/4" X 2 1/2"	A325N	3/4"				
SP-5	14 (Ø1 1/4" X 4"	A325N	1"				


1

BRACE	TABLE
MARK	MATERIAL
FB1	L2X2X1/8
FB2	L2X2X1/8
FB3	L2X2X1/8
FB4	L2X2X1/8
FB5	L2X2X1/8
FB6	L2X2X1/8
FB7	L2X2X1/8
FB8	L2X2X1/8
FB9	L3X3X3/16

ORDER #: 7877479

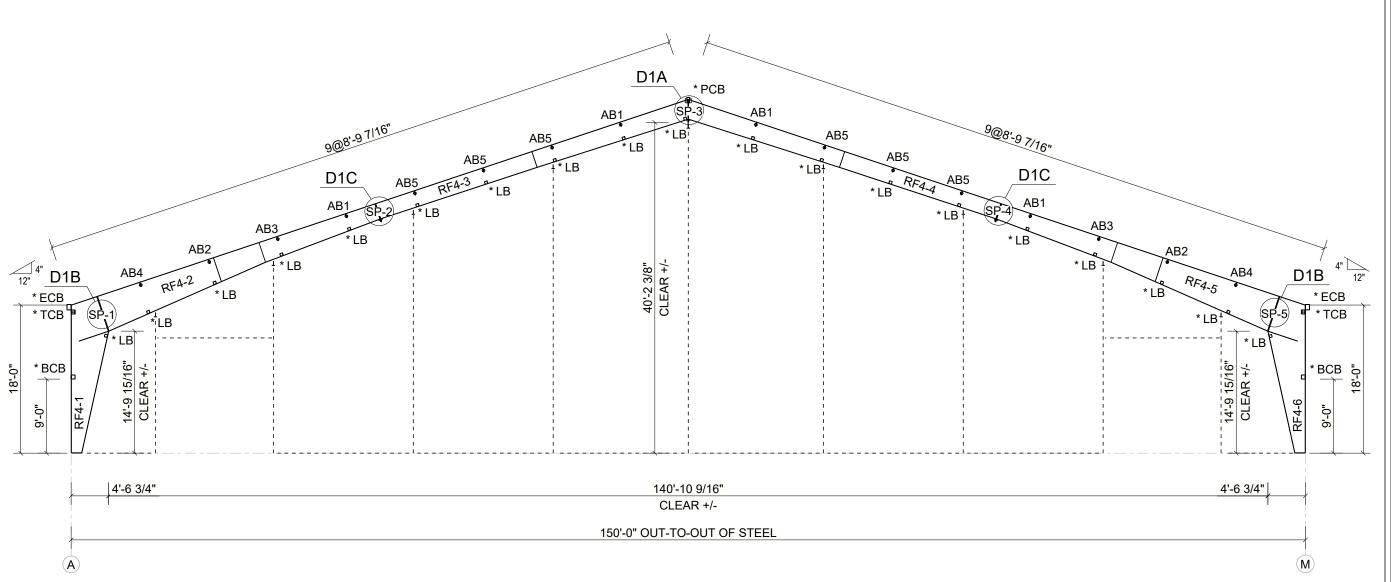
CUSTOMER #: 9123980

RIGID FRAME ELEVATION: FRAME LINE 14, 15

* SEE ROOF PLAN & SIDEWALL ELEVATION SHEET

** (1) FB @ FRAME LINE 15. SEE PEAK BRACE LAYOUT DETAIL

DRAWING DETAILS									
DRAW	N BY:	SE	3N	N CREATION DATE: 10/17/2024					
			REVIS	IONS:					
1	TAB	11/05/2024	INCREASED COLLATERAL LOAD						
NO.	BY:	DATE:		DESCRIPT	ON:				
NO SCALE				7					
	SHEET SIZ	E: 11X17	SHE	ET:	.1				


MEMBER	TABLE						
Manle	10/-:	I amountle	Web Depth	Web I	Plate	Outside Flange	Inside Flange
Mark	Weight	Length	Start/End	Thick	Length	W x Thk x Length	W x Thk x Length
RF4-1	1384	19'-2 1/8"	15.0 /54.0	0.375	18'-11 1/2"	8 x 3/8" x 17'-11 1/16" 8 x 5/16" x 3'-3 1/4"	8 x 3/8" x 15'-0 5/8"
RF4-2	1804	35'-7 9/16"	53.0 /36.5 36.5 /30.0 30.0 /23.0	0.250 0.250 0.188	14'-10 3/16" 5'-10" 14'-10"	8 x 5/16" x 35'-6 3/16"	8 x 5/16" x 20'-9 1/4" 8 x 5/16" x 14'-10 1/8"
RF4-3	1414	40'-1 3/16"	23.0 /24.0 24.0 /28.5	0.188 0.188	20'-0" 20'-0"	8 x 5/16" x 40'-0"	8 x 1/4" x 20'-0" 8 x 1/4" x 19'-2 15/16"
RF4-4	1410	40'-1 3/16"	23.0 /24.0 24.0 /28.5	0.188 0.188	20'-0" 20'-0"	8 x 5/16" x 40'-0"	8 x 1/4" x 20'-0" 8 x 1/4" x 19'-2 15/16"
RF4-5	1804	35'-7 9/16"	53.0 /36.5 36.5 /30.0 30.0 /23.0	0.250 0.250 0.188	14'-10 3/16" 5'-10" 14'-10"	8 x 5/16" x 35'-6 3/16"	8 x 5/16" x 20'-9 1/4" 8 x 5/16" x 14'-10 1/8"
RF4-6	1384	19'-2 1/8"	15.0 /54.0	0.375	18'-11 1/2"	8 x 3/8" x 17'-11 1/16" 8 x 5/16" x 3'-3 1/4"	8 x 3/8" x 15'-0 5/8"

STIFFEN	ER TABLI	Ε						
	F	PLATE SIZE						
MARK	WIDTH	WIDTH THICK LENGTH						
RF4-1	3.880	0.250	45.11					
RF4-6	3.880	0.250	45.11					

SPLICE BOLT TABLE				
MARK	QTY	BOLT SIZE	TYPE	PLATE THK
SP-1	12	Ø1" X 3"	A325N	5/8"
SP-2	10	Ø3/4" X 2 1/2"	A325N	3/4"
SP-3	8	Ø3/4" X 2"	A325N	3/8"
SP-4	10	Ø3/4" X 2 1/2"	A325N	3/4"
SP-5	12	Ø1" X 3"	A325N	5/8"

BRACE TABLE		
MARK	MATERIAL	
AB1	HSS4X10GA	
AB2	HSS4X10GA	
AB3	HSS4X10GA	
AB4	HSS4X10GA	
AB5	HSS4X10GA	

RIGID FRAME ELEVATION: FRAME LINE 16

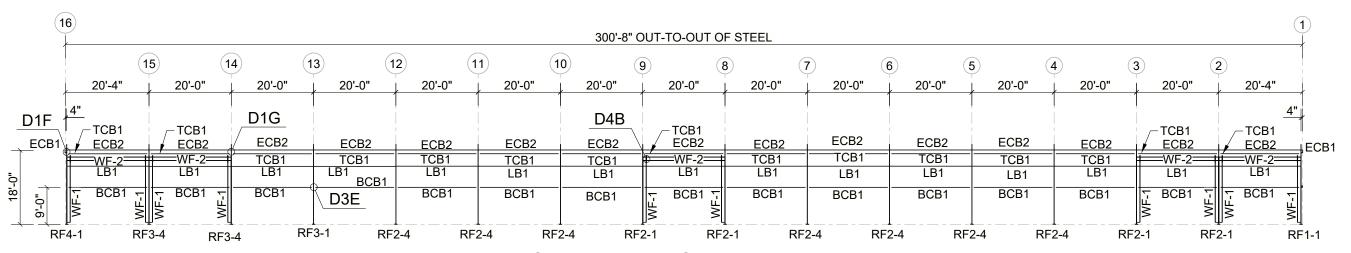
DRAWING DETAILS
DRAWN BY: SBN CREATION DATE: 10/17/2024

REVISIONS:

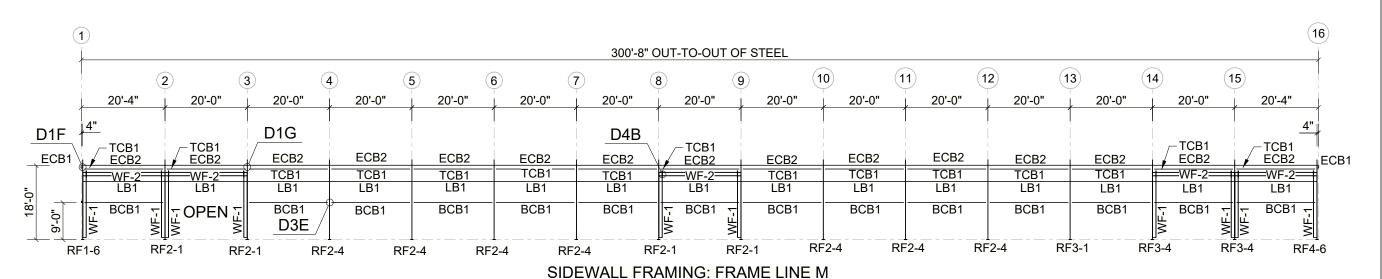
1 TAB 11/05/2024 INCREASED COLLATERAL LOAD
NO. BY: DATE:
NO SCALE
SHEET SIZE: 11X17

SHEET: E8

PROFESSIONAL SEAL


BOLT TABLE (PER CONNECTION)				
QTY	BOLT SIZE	BOLTED ASSEMBLIES		
12	Ø5/8" X 2" A325N BOLT	WF-1 TO RF		
8	Ø1" X 3" A325N BOLT	WF-1 TO WF-2		

BRACE	BRACE TABLE		
MARK	MATERIAL		
BCB1	HSS6X6X3/16		
ECB1	HSS8X6X3/16		
ECB2	HSS8X6X3/16		
LB1	HSS4X4X1/8		
TCB1	HSS6X6X3/16		
WF-1	W10X19		
WF-2	W10X22		


	DEVELOPED BY:
	ClearSpan \
	ENGINEERING SERVICES & PRODUCTS CO. 1440 18TH AVENUE SW DYERSVILLE, IA 52040 P.563.875.6113
	WWW.ESAPCO.COM WWW.CLEARSPAN.COM
- 1	

ORDER #: 7877479

CUSTOMER #: 9123980

SIDEWALL FRAMING: FRAME LINE A

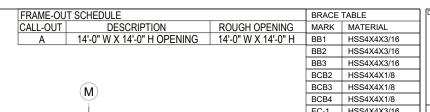
LONDON, KY 40741-1942
LONTACT PHONE:

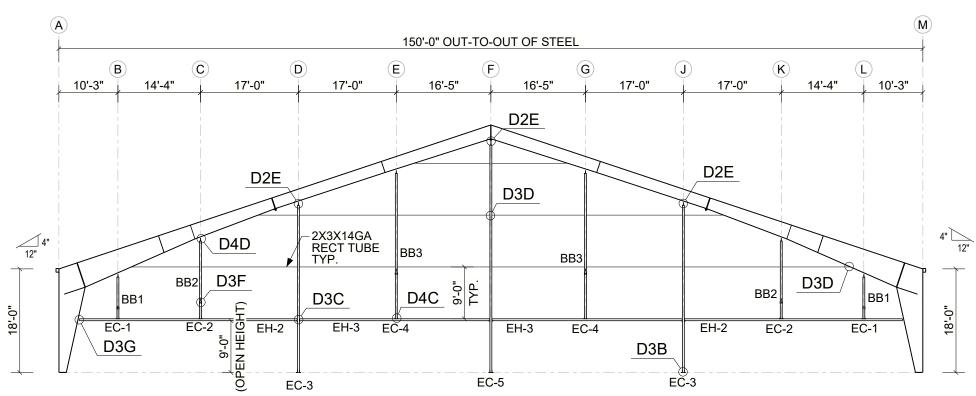
859-806-0086

STRUCTURE SKU #:

60417

STRUCTURE SKE:

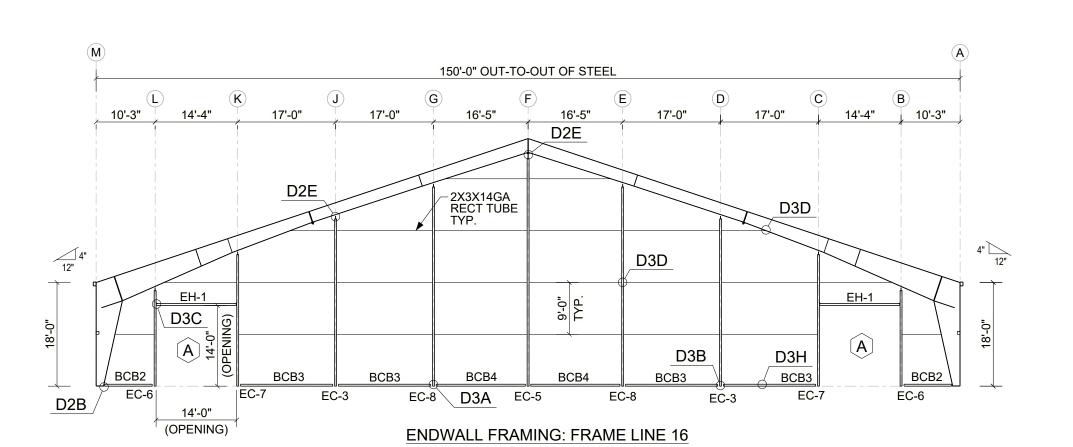

150-0" x 300-8" x 18-0"


STRUCTURE SKE:

150-0" x 300-8" x 18-0"

	DRAWING DETAILS						
DRAWN BY: SE			BN	CREATI	ON DATE:	10/17/2024	
			REVIS	SIONS:			
1	TAB	11/05/2024	INCR	EASED	COLLAT	ERAL LOAD	
NO.	BY:	DATE:			DESCRIPTION	ON:	
NO SCALE				F	0		
SHEET SIZE: 11X17			SHE	ET:		IJ	

NOTE: OPEN BELOW BCB'S.



EC-5

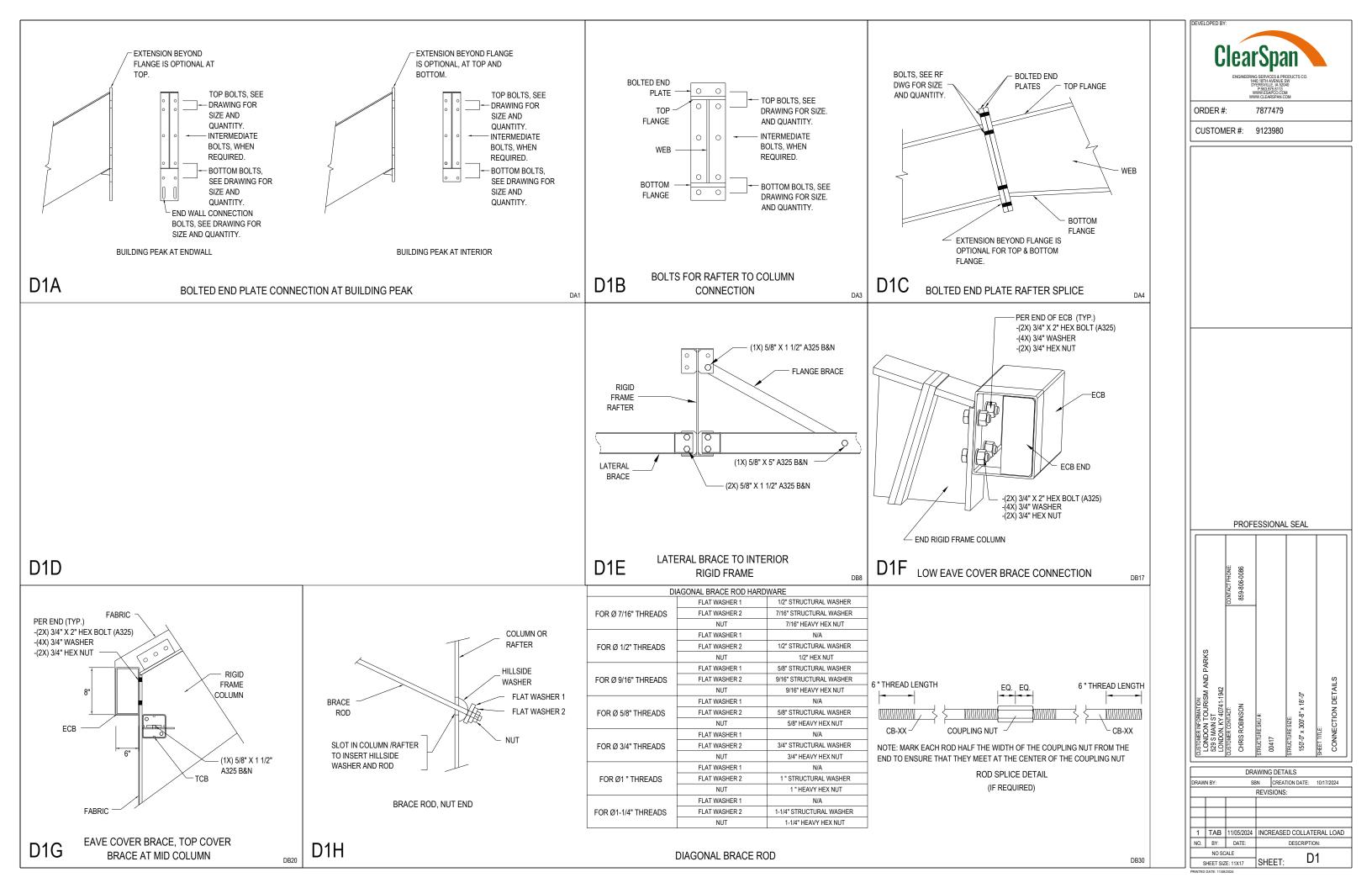
ENDWALL FRAMING: FRAME LINE 1

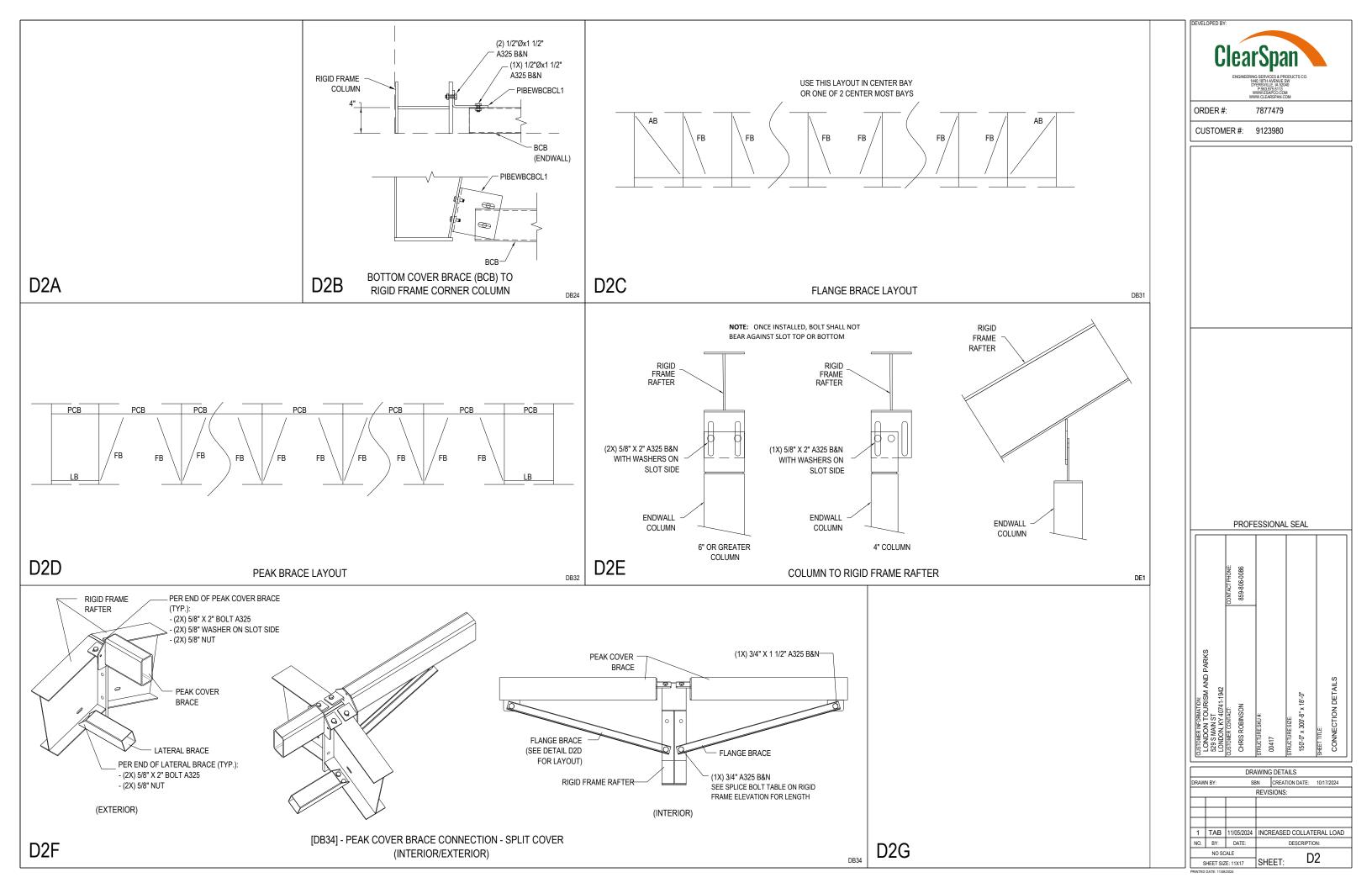
EC-3

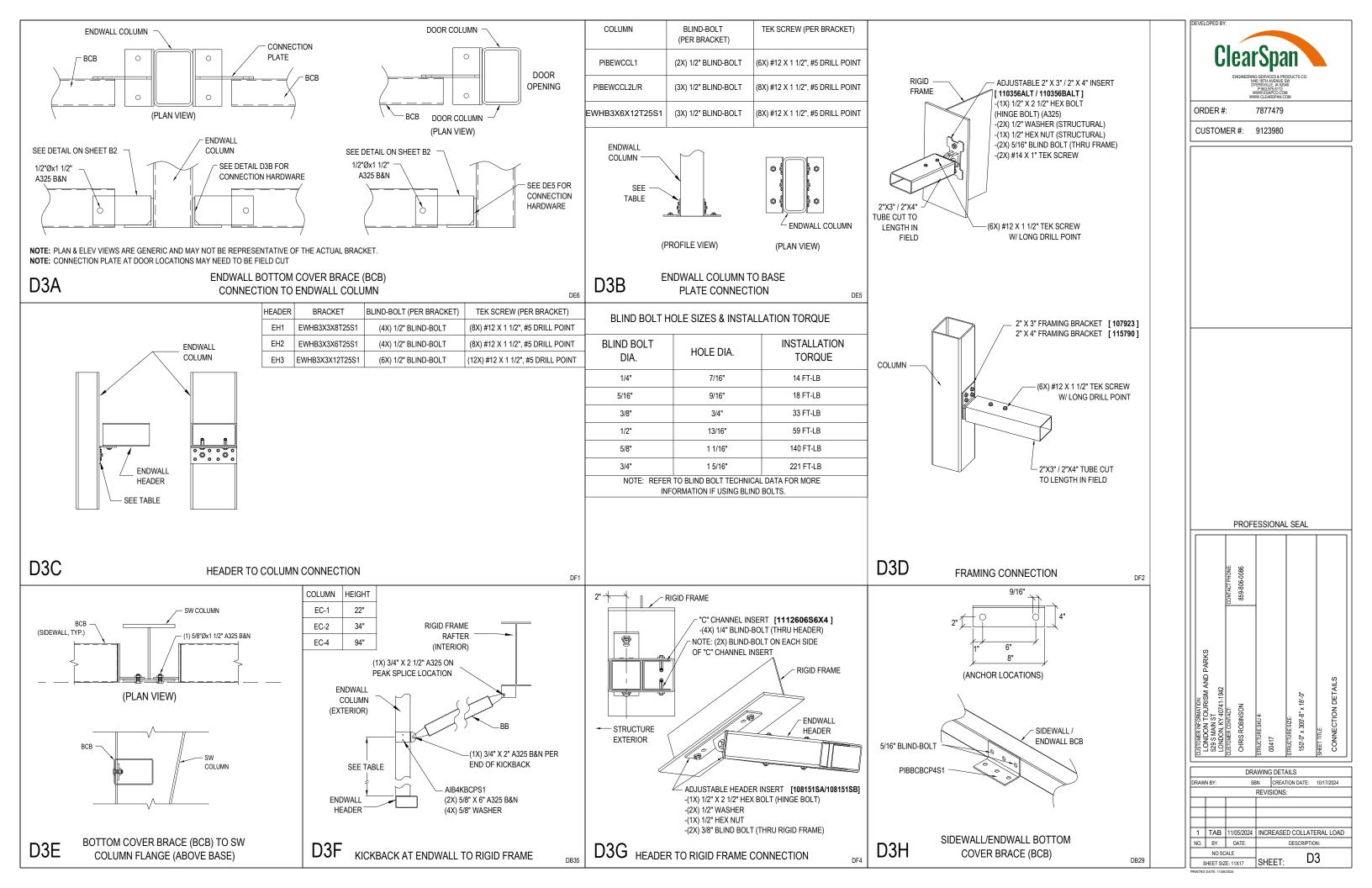
EC-3

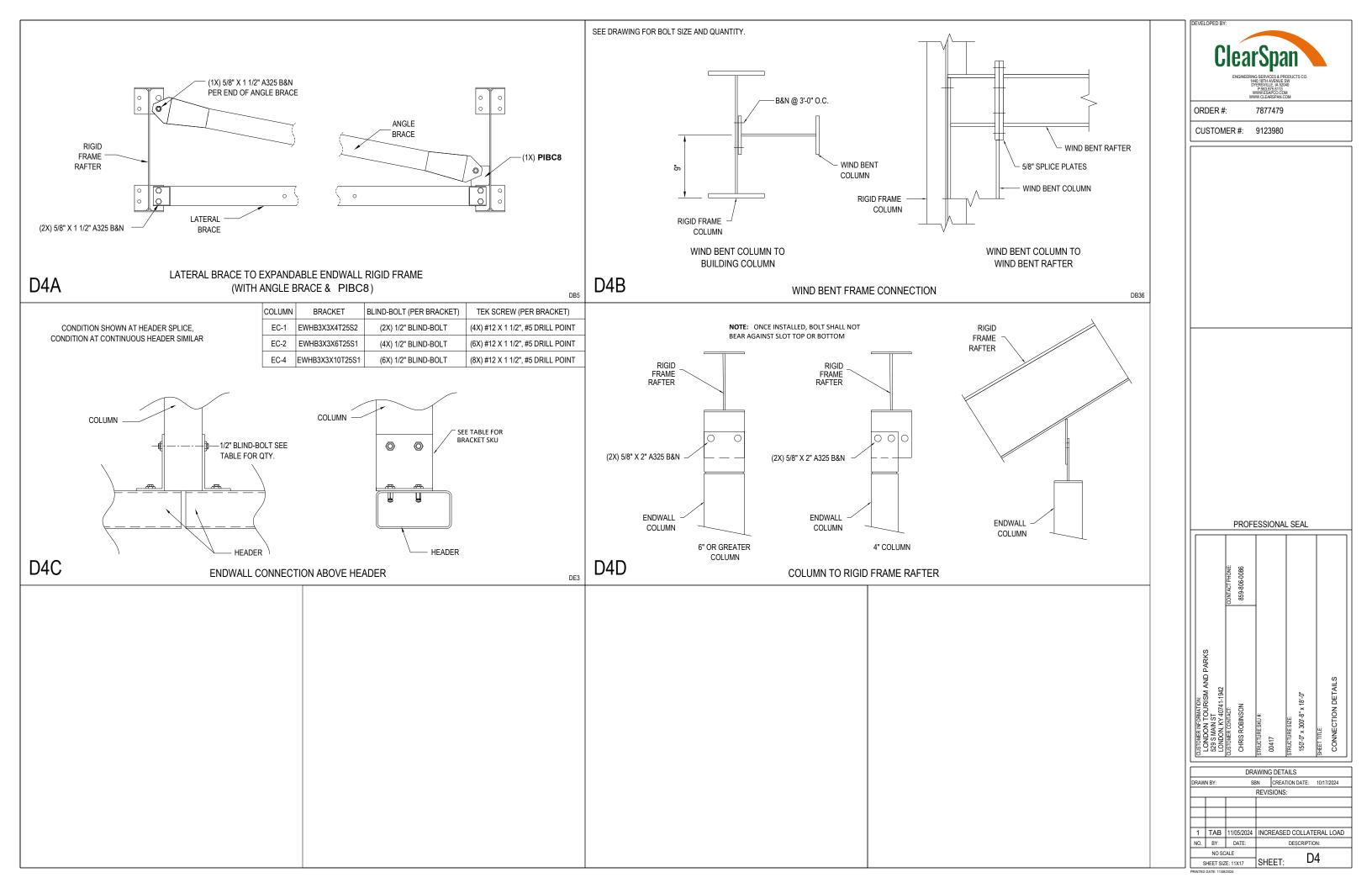
	MATERIAL	MARK
_	HSS4X4X3/16	BB1
	HSS4X4X3/16	BB2
U	HSS4X4X3/16	BB3
	HSS4X4X1/8	BCB2
	HSS4X4X1/8	BCB3
	HSS4X4X1/8	BCB4
ORDER#	HSS4X4X3/16	EC-1
ONDER #	HSS6X4X3/16	EC-2
CUSTOM	HSS12X4X3/16	EC-3
COSTON	HSS10X4X3/16	EC-4
	HSS14X4X3/16	EC-5
	HSS8X4X3/16	EC-6
	HSS8X4X3/16	EC-7
	HSS14X4X3/16	EC-8
	HSS8X4X3/16	EH-1
	HSS8A43/18	[비 2

EH-3 HSS12X4X3/16


MER #: 9123980


859-806-0086		


PROFESSIONAL SEAL


150'-0" x 300'-8" x 18'-0"

	DRAWING DETAILS						
DRAWN BY: SB		BN CREA	ATION DATE: 10/17/2024				
			REVISIONS	S:			
1	TAB	11/05/2024	INCREASI	ED COLLATERAL LOAD			
NO.	BY:	DATE:		DESCRIPTION:			
NO SCALE			E10				
SHEET SIZE: 11X17		SHEET:	: □10				

